Entanglement gauge and the non-Abelian geometric phase with two photonic qubits

被引:7
|
作者
Marzlin, KP [1 ]
Bartlett, SD
Sanders, BC
机构
[1] Macquarie Univ, Dept Phys, Sydney, NSW 2109, Australia
[2] Macquarie Univ, Ctr Adv Comp Algorithms & Cryptog, Sydney, NSW 2109, Australia
[3] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevA.67.022316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the entanglement gauge describing the combined effects of local operations and nonlocal unitary transformations on bipartite quantum systems. The entanglement gauge exploits the invariance of nonlocal properties for bipartite systems under local (gauge) transformations. This new formalism yields observable effects arising from the gauge geometry of the bipartite system. In particular, we propose a non-Abelian gauge theory realized via two separated spatial modes of the quantized electromagnetic field manipulated by linear optics. In this linear optical realization, a bipartite state of two separated spatial modes can acquire a non-Abelian geometric phase.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] ABELIAN GAUGE-INVARIANCE OF NON-ABELIAN GAUGE THEORIES
    BRANDT, RA
    WINGCHIU, N
    [J]. PHYSICAL REVIEW D, 1977, 15 (08) : 2235 - 2244
  • [22] Non-Abelian Geometric Dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [23] Entanglement Entropy in 2D non-abelian pure gauge theory
    Gromov, Andrey
    Santos, Raul A.
    [J]. PHYSICS LETTERS B, 2014, 737 : 60 - 64
  • [24] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [25] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    [J]. PHYSICAL REVIEW B, 2010, 81 (24)
  • [26] ON THE PHASE-STRUCTURE OF NON-ABELIAN GAUGE-THEORIES
    DEMILIO, E
    MINTCHEV, M
    [J]. PHYSICS LETTERS B, 1983, 132 (1-3) : 119 - 124
  • [27] Geometric phases and quantum entanglement as building blocks for non-Abelian quasiparticle statistics
    Stern, A
    von Oppen, F
    Mariani, E
    [J]. PHYSICAL REVIEW B, 2004, 70 (20): : 205338 - 1
  • [28] A theory of non-abelian tensor gauge field with non-abelian gauge symmetry G x G
    Chu, Chong-Sun
    [J]. NUCLEAR PHYSICS B, 2013, 866 (01) : 43 - 57
  • [29] Note on non-Abelian two-form gauge fields
    Pei-Ming Ho
    Yutaka Matsuo
    [J]. Journal of High Energy Physics, 2012
  • [30] Entanglement spectrum of non-Abelian anyons
    吴英海
    [J]. Chinese Physics B, 2022, (03) : 573 - 579