A theory of non-abelian tensor gauge field with non-abelian gauge symmetry G x G

被引:18
|
作者
Chu, Chong-Sun [1 ,2 ]
机构
[1] Univ Durham, Ctr Particle Theory, Durham DH1 3LE, England
[2] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
关键词
M-theory; D-branes; M-branes; Gauge symmetry; DIFFERENTIAL GEOMETRY; COVARIANT ACTION;
D O I
10.1016/j.nuclphysb.2012.08.013
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Chern-Simons action of the ABJM theory is not gauge invariant in the presence of a boundary. In Chu and Smith (2010) [1], this was shown to imply the existence of a Kac-Moody current algebra on the theory of multiple self-dual strings. In this paper we conjecture that the Kac-Moody symmetry induces a U(N) x U(N) gauge symmetry in the theory of N coincident M5-branes. As a start, we construct a G x G gauge symmetry algebra structure which naturally includes the tensor gauge transformation for a non-abelian 2-form tensor gauge field. The gauge covariant field strength is constructed. This new G x G gauge symmetry algebra allows us to write down a theory of a non-abelian tensor gauge field in any dimensions. The G x G gauge bosons can be either propagating, in which case the 2-form gauge fields would interact with each other through the 1-form gauge field; or they can be auxiliary and carry no local degrees of freedom, in which case the 2-form gauge fields would be self-interacting non-trivially. We finally comment on the possible application to the system of multiple M5-branes. We note that the field content of the G x G non-abelian tensor gauge theory can be fitted nicely into (1,0) supermultiplets: and we suggest a construction of the theory of multiple M5-branes with manifest (1,0) supersymmetry. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 50 条
  • [1] Non-Abelian basis tensor gauge theory
    Basso, Edward E.
    Chung, Daniel J. H.
    [J]. PHYSICAL REVIEW D, 2019, 100 (08)
  • [2] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183): : 279 - 290
  • [3] Non-Abelian tensor gauge fields
    George Savvidy
    [J]. Proceedings of the Steklov Institute of Mathematics, 2011, 272 : 201 - 215
  • [4] Non-Abelian tensor gauge fields
    Savvidy, George
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 (01) : 201 - 215
  • [5] Non-abelian gravity and antisymmetric tensor gauge theory
    Hull, CM
    [J]. NUCLEAR PHYSICS B, 1998, 513 (1-2) : 229 - 238
  • [6] Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory
    Cruz-Filho, J. S.
    Amorim, R. G. G.
    Khanna, F. C.
    Santana, A. E.
    Santos, A. F.
    Ulhoa, S. C.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (10) : 3203 - 3224
  • [7] Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory
    J. S. Cruz-Filho
    R. G. G. Amorim
    F. C. Khanna
    A. E. Santana
    A. F. Santos
    S. C. Ulhoa
    [J]. International Journal of Theoretical Physics, 2019, 58 : 3203 - 3224
  • [8] THEORY OF MAGNETIC MONOPOLES WITH NON-ABELIAN GAUGE SYMMETRY
    CHRIST, NH
    [J]. PHYSICAL REVIEW LETTERS, 1975, 34 (06) : 355 - 358
  • [9] Octonionic Non-Abelian Gauge Theory
    B. C. Chanyal
    P. S. Bisht
    O. P. S. Negi
    [J]. International Journal of Theoretical Physics, 2013, 52 : 3522 - 3533
  • [10] GLOBAL GAUGE IN A NON-ABELIAN THEORY
    SOLOVEV, MA
    [J]. JETP LETTERS, 1983, 38 (08) : 504 - 507