DEPENDENCE OF NON-ABELIAN MATRIX BERRY PHASE OF A SEMICONDUCTOR QUANTUM DOT ON GEOMETRIC PROPERTIES OF ADIABATIC PATH

被引:0
|
作者
Kim, S. C. [1 ]
Hwang, N. Y. [1 ]
Park, P. S. [1 ]
Kim, Y. J. [1 ]
Lee, C. J. [1 ]
Yang, S. R. Eric [1 ]
机构
[1] Korea Univ, Dept Phys, Seoul 136701, South Korea
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A matrix Berry phase cane be generated and detected by all electric means in II-VI and III-V n-type semiconductor quantum dots by changing the shape of the confinement potential. This follows front general symmetry considerations in the presence of spin-orbit coupling terms. We explain these results and discuss how the matrix Berry phase depends on geometric properties of adiabatic paths. We suggest how the matrix Berry phase may be detected in transport measurements.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [1] DEPENDENCE OF NON-ABELIAN MATRIX BERRY PHASE OF A SEMICONDUCTOR QUANTUM DOT ON GEOMETRIC PROPERTIES OF ADIABATIC PATH
    Kim, S. C.
    Hwang, N. Y.
    Park, P. S.
    Kim, Y. J.
    Lee, C. J.
    Yang, S. -R Eric
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (25-26): : 4471 - 4481
  • [2] NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE
    ANANDAN, J
    PHYSICS LETTERS A, 1988, 133 (4-5) : 171 - 175
  • [3] NON-ABELIAN GEOMETRIC EFFECT IN QUANTUM ADIABATIC TRANSITIONS
    JOYE, A
    PFISTER, CE
    PHYSICAL REVIEW A, 1993, 48 (04): : 2598 - 2608
  • [4] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [5] Pumping in quantum dots and non-Abelian matrix Berry phases
    Hwang, N. Y.
    Kim, S. C.
    Park, P. S.
    Yang, S. -R. Eric
    SOLID STATE COMMUNICATIONS, 2008, 145 (11-12) : 515 - 519
  • [6] Non-Abelian Berry phase for open quantum systems: Topological protection versus geometric dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    PHYSICAL REVIEW B, 2019, 100 (08)
  • [7] NON-ABELIAN BERRY PHASE IN A QUANTUM-MECHANICAL ENVIRONMENT
    ALDINGER, RR
    BOHM, A
    LOEWE, M
    FOUNDATIONS OF PHYSICS LETTERS, 1991, 4 (03) : 217 - 234
  • [8] Phase space formulation of the Abelian and non-Abelian quantum geometric tensor
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [9] Electric generation of non-Abelian matrix Berry phases in n-type semiconductor quantum dots
    Yang, S. -R. Eric
    Hwang, N. Y.
    Kim, S. C.
    Kim, Y. J.
    Park, P. S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1241 - 1242
  • [10] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    PHYSICAL REVIEW B, 2010, 81 (24)