DEPENDENCE OF NON-ABELIAN MATRIX BERRY PHASE OF A SEMICONDUCTOR QUANTUM DOT ON GEOMETRIC PROPERTIES OF ADIABATIC PATH

被引:0
|
作者
Kim, S. C. [1 ]
Hwang, N. Y. [1 ]
Park, P. S. [1 ]
Kim, Y. J. [1 ]
Lee, C. J. [1 ]
Yang, S. R. Eric [1 ]
机构
[1] Korea Univ, Dept Phys, Seoul 136701, South Korea
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A matrix Berry phase cane be generated and detected by all electric means in II-VI and III-V n-type semiconductor quantum dots by changing the shape of the confinement potential. This follows front general symmetry considerations in the presence of spin-orbit coupling terms. We explain these results and discuss how the matrix Berry phase depends on geometric properties of adiabatic paths. We suggest how the matrix Berry phase may be detected in transport measurements.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [21] Non-Abelian adiabatic geometric transformations in a cold strontium gas
    Leroux, F.
    Pandey, K.
    Rehbi, R.
    Chevy, F.
    Miniatura, C.
    Gremaud, B.
    Wilkowski, D.
    NATURE COMMUNICATIONS, 2018, 9
  • [22] Experimental realization of non-Abelian non-adiabatic geometric gates
    A. A. Abdumalikov Jr
    J. M. Fink
    K. Juliusson
    M. Pechal
    S. Berger
    A. Wallraff
    S. Filipp
    Nature, 2013, 496 : 482 - 485
  • [23] Non-Abelian quantum adiabatic dynamics and phase simulation with classical resonant oscillators
    Zhang, Y. N.
    Shen, J.
    Liu, H. D.
    Yi, X. X.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [24] Non-Abelian Berry phase Factor of the Degenerate states
    Wang Jianbo Shanxi Teacher's University
    山西师大学报(自然科学版), 1991, (04) : 30 - 35
  • [25] The Berry phase and monopoles in non-abelian gauge theories
    Gubarev, FV
    Zakharov, VI
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (02): : 157 - 174
  • [26] SYMPLECTIC STRUCTURE FOR THE NON-ABELIAN GEOMETRIC PHASE
    CHRUSCINSKI, D
    PHYSICS LETTERS A, 1994, 186 (1-2) : 1 - 4
  • [27] Investigation of Floquet engineered non-Abelian geometric phase for holonomic quantum computing
    Cooke, Logan W.
    Tashchilina, Arina
    Protter, Mason
    Lindon, Joseph
    Ooi, Tian
    Marsiglio, Frank
    Maciejko, Joseph
    Leblanc, Lindsay J.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [28] Non-Abelian geometric phase for general three-dimensional quantum systems
    Mostafazadeh, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21): : 7525 - 7535
  • [29] Non-Abelian phase and geometric force in a quantum-classical hybrid system
    Liu, Yang
    Zhang, Y. N.
    Yi, X. X.
    Liu, H. D.
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [30] Non-Abelian geometric quantum memory with an atomic ensemble
    Li, Y
    Zhang, P
    Zanardi, P
    Sun, CP
    PHYSICAL REVIEW A, 2004, 70 (03): : 032330 - 1