Non-Abelian geometric phase for general three-dimensional quantum systems

被引:7
|
作者
Mostafazadeh, A [1 ]
机构
[1] UNIV ALBERTA, INST THEORET PHYS, EDMONTON, AB T6G 2J1, CANADA
来源
关键词
D O I
10.1088/0305-4470/30/21/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Adiabatic U(2) geometric phases are studied for arbitrary quantum systems with a three-dimensional Hilbert space. Necessary and sufficient conditions for the occurrence of the non-Abelian geometrical phases are obtained without actually solving the full eigenvalue problem for the instantaneous Hamiltonian. The parameter space of such systems which has the structure of CP2 is explicitly constructed. The results of this article are applicable for arbitrary multipole interaction Hamiltonians H = Q(i1...1n)J(i)j... J(in) and their linear combinations for spin j = 1 systems. In particular it is shown that the nuclear quadrupole Hamiltonian H = Q(ij)J(i)J(j) does actually lead to non-Abelian geometric phases for j = 1. This system, being bosonic, is time-reversal invariant. Therefore, it cannot support Abelian adiabatic geometrical phases.
引用
收藏
页码:7525 / 7535
页数:11
相关论文
共 50 条
  • [1] Three-dimensional non-Abelian quantum holonomy
    Neef, Vera
    Pinske, Julien
    Klauck, Friederike
    Teuber, Lucas
    Kremer, Mark
    Ehrhardt, Max
    Heinrich, Matthias
    Scheel, Stefan
    Szameit, Alexander
    [J]. NATURE PHYSICS, 2023, 19 (01) : 30 - +
  • [2] Three-dimensional non-Abelian quantum holonomy
    Vera Neef
    Julien Pinske
    Friederike Klauck
    Lucas Teuber
    Mark Kremer
    Max Ehrhardt
    Matthias Heinrich
    Stefan Scheel
    Alexander Szameit
    [J]. Nature Physics, 2023, 19 : 30 - 34
  • [3] Phase space formulation of the Abelian and non-Abelian quantum geometric tensor
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [4] Resolution of non-Abelian three-dimensional singularities
    Térouanne, S
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (05) : 329 - 332
  • [5] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    [J]. PHYSICAL REVIEW B, 2010, 81 (24)
  • [6] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):
  • [7] NON-ABELIAN GEOMETRIC PHASE FROM INCOMPLETE QUANTUM MEASUREMENTS
    ANANDAN, J
    PINES, A
    [J]. PHYSICS LETTERS A, 1989, 141 (07) : 335 - 339
  • [8] Non-abelian bosonisation in three-dimensional held theory
    Banerjee, N
    Banerjee, R
    Ghosh, S
    [J]. NUCLEAR PHYSICS B, 1996, 481 (1-2) : 421 - 430
  • [9] Non-Abelian Berry phase for open quantum systems: Topological protection versus geometric dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    [J]. PHYSICAL REVIEW B, 2019, 100 (08)
  • [10] Detecting non-Abelian geometric phases with three-level Λ systems
    Du, Yan-Xiong
    Xue, Zheng-Yuan
    Zhang, Xin-Ding
    Yan, Hui
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):