Investigation of Floquet engineered non-Abelian geometric phase for holonomic quantum computing

被引:2
|
作者
Cooke, Logan W. [1 ]
Tashchilina, Arina [1 ]
Protter, Mason [1 ]
Lindon, Joseph [1 ]
Ooi, Tian [1 ]
Marsiglio, Frank [1 ,2 ]
Maciejko, Joseph [1 ,2 ]
Leblanc, Lindsay J. [1 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[2] Univ Alberta, Theoret Phys Inst, Edmonton, AB, Canada
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
EXPERIMENTAL REALIZATION; GAUGE STRUCTURE; GATES;
D O I
10.1103/PhysRevResearch.6.013057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Holonomic quantum computing functions by transporting an adiabatically degenerate manifold of computational states around a closed loop in a control-parameter space; this cyclic evolution results in a non-Abelian geometric phase which may couple states within the manifold. Realizing the required degeneracy is challenging and typically requires auxiliary levels or intermediate-level couplings. One potential way to circumvent this is through Floquet engineering, where the periodic driving of a nondegenerate Hamiltonian leads to degenerate Floquet bands, and subsequently non-Abelian gauge structures may emerge. Here we present an experiment in ultracold 87Rb atoms where atomic spin states are dressed by modulated RF fields to induce periodic driving of a family of Hamiltonians linked through a fully tuneable parameter space. The adiabatic motion through this parameter space leads to the holonomic evolution of the degenerate spin states in SU (2), characterized by a non-Abelian connection. We study the holonomic transformations of spin eigenstates in the presence of a background magnetic field, characterizing the fidelity of these single-qubit gate operations. Results indicate that while the Floquet engineering technique removes the need for explicit degeneracies, it inherits many of the same limitations present in degenerate systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Non-Abelian geometric phase, Floquet theory and periodic dynamical invariants
    Mostafazadeh, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (49): : 9975 - 9982
  • [2] Phase space formulation of the Abelian and non-Abelian quantum geometric tensor
    Gonzalez, Diego
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [3] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    PHYSICAL REVIEW B, 2010, 81 (24)
  • [4] NON-ABELIAN GEOMETRIC PHASE FROM INCOMPLETE QUANTUM MEASUREMENTS
    ANANDAN, J
    PINES, A
    PHYSICS LETTERS A, 1989, 141 (07) : 335 - 339
  • [5] Quantum computing with non-Abelian quasiparticles
    Bonesteel, N. E.
    Hormozi, L.
    Zikos, G.
    Simon, S. H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9): : 1372 - 1378
  • [6] Floquet Mechanism for Non-Abelian Fractional Quantum Hall States
    Lee, Ching Hua
    Ho, Wen Wei
    Yang, Bo
    Gong, Jiangbin
    Papic, Zlatko
    PHYSICAL REVIEW LETTERS, 2018, 121 (23)
  • [7] NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE
    ANANDAN, J
    PHYSICS LETTERS A, 1988, 133 (4-5) : 171 - 175
  • [8] SYMPLECTIC STRUCTURE FOR THE NON-ABELIAN GEOMETRIC PHASE
    CHRUSCINSKI, D
    PHYSICS LETTERS A, 1994, 186 (1-2) : 1 - 4
  • [9] Non-Abelian geometric phase for general three-dimensional quantum systems
    Mostafazadeh, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21): : 7525 - 7535
  • [10] Non-Abelian phase and geometric force in a quantum-classical hybrid system
    Liu, Yang
    Zhang, Y. N.
    Yi, X. X.
    Liu, H. D.
    PHYSICAL REVIEW A, 2024, 109 (05)