Finite-size and finite-time scaling for kinetic rough interfaces

被引:0
|
作者
Chhimpa, Rahul [1 ]
Yadav, Avinash Chand [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221 005, India
关键词
BALLISTIC DEPOSITION; SURFACE RELAXATION; GROWTH; MODEL; UNIVERSALITY;
D O I
10.1103/PhysRevE.109.054130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider discrete models of kinetic rough interfaces that exhibit space-time scale invariance in heightheight correlation. We use the generic scaling theory of Ramasco et al. [Phys. Rev. Lett. 84, 2199 (2000)] to confirm that the dynamical structure factor of the height profile can uniquely characterize the underlying dynamics. We apply both finite-size and finite-time scaling methods that systematically allow an estimation of the critical exponents and the scaling functions, eventually establishing the universality class accurately. The finitesize scaling analysis offers an alternative way to characterize the anomalous rough interfaces. As an illustration, we investigate a class of self-organized interface models in random media with extremal dynamics. The isotropic version shows a faceted pattern and belongs to the same universality class (as shown numerically) as the Sneppen model (version A). We also examine an anisotropic version of the Sneppen model and suggest that the model belongs to the universality class of the tensionless Kardar-Parisi-Zhang (tKPZ) equation in one dimension.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] FINITE-SIZE SCALING AND PHENOMENOLOGICAL RENORMALIZATION
    NIGHTINGALE, P
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7927 - 7932
  • [22] FINITE-SIZE SCALING IN A MICROCANONICAL ENSEMBLE
    DESAI, RC
    HEERMANN, DW
    BINDER, K
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 795 - 823
  • [23] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2014, 89 (09)
  • [24] MAGNETIZATIONS FROM FINITE-SIZE SCALING
    HAMER, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12): : L675 - L683
  • [25] Corrected finite-size scaling in percolation
    Li, Jiantong
    Ostling, Mikael
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [26] Finite-size scaling in complex networks
    Hong, Hyunsuk
    Ha, Meesoon
    Park, Hyunggyu
    PHYSICAL REVIEW LETTERS, 2007, 98 (25)
  • [27] Finite-size scaling in anisotropic systems
    Tonchev, N. S.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [28] Finite-size scaling of the quasispecies model
    Campos, PRA
    Fontanari, JF
    PHYSICAL REVIEW E, 1998, 58 (02): : 2664 - 2667
  • [29] Disorder averaging and finite-size scaling
    Bernardet, K
    Pázmándi, F
    Batrouni, GG
    PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4477 - 4480
  • [30] ORDER PARAMETER AND FINITE-SIZE SCALING
    TAKANO, H
    SAITO, Y
    PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (06): : 1369 - 1376