Finite-size and finite-time scaling for kinetic rough interfaces

被引:0
|
作者
Chhimpa, Rahul [1 ]
Yadav, Avinash Chand [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221 005, India
关键词
BALLISTIC DEPOSITION; SURFACE RELAXATION; GROWTH; MODEL; UNIVERSALITY;
D O I
10.1103/PhysRevE.109.054130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider discrete models of kinetic rough interfaces that exhibit space-time scale invariance in heightheight correlation. We use the generic scaling theory of Ramasco et al. [Phys. Rev. Lett. 84, 2199 (2000)] to confirm that the dynamical structure factor of the height profile can uniquely characterize the underlying dynamics. We apply both finite-size and finite-time scaling methods that systematically allow an estimation of the critical exponents and the scaling functions, eventually establishing the universality class accurately. The finitesize scaling analysis offers an alternative way to characterize the anomalous rough interfaces. As an illustration, we investigate a class of self-organized interface models in random media with extremal dynamics. The isotropic version shows a faceted pattern and belongs to the same universality class (as shown numerically) as the Sneppen model (version A). We also examine an anisotropic version of the Sneppen model and suggest that the model belongs to the universality class of the tensionless Kardar-Parisi-Zhang (tKPZ) equation in one dimension.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Microcanonical Finite-Size Scaling
    Michael Kastner
    Michael Promberger
    Alfred Hüller
    Journal of Statistical Physics, 2000, 99 : 1251 - 1264
  • [12] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264
  • [13] Finite-size effects and finite-size scaling in time evolution during a colorless confining phase transition
    Cherif, Salah
    Ladrem, Madjid Lakhdar Hamou
    Alfull, Zainab Zaki Mohammed
    Alharbi, Rana Meshal
    Ahmed, M. A. A.
    PHYSICA SCRIPTA, 2021, 96 (10)
  • [14] FINITE-SIZE SCALING APPROACH TO THE KINETIC ISING-MODEL
    TAKANO, H
    PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (02): : 493 - 507
  • [15] Finite-size scaling of correlation functions in finite systems
    Xin Zhang
    GaoKe Hu
    YongWen Zhang
    XiaoTeng Li
    XiaoSong Chen
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [16] Finite-size scaling of correlation functions in finite systems
    Xin Zhang
    GaoKe Hu
    YongWen Zhang
    XiaoTeng Li
    XiaoSong Chen
    Science China(Physics,Mechanics & Astronomy), 2018, (12) : 71 - 77
  • [17] Finite-size scaling of correlation functions in finite systems
    Zhang, Xin
    Hu, GaoKe
    Zhang, YongWen
    Li, XiaoTeng
    Chen, XiaoSong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (12)
  • [18] FINITE-SIZE EFFECTS IN FLUID INTERFACES
    CASELLE, M
    GLIOZZI, F
    PROVERO, P
    VINTI, S
    NUCLEAR PHYSICS B, 1994, : 720 - 722
  • [19] FINITE-SIZE EFFECTS IN FLUID INTERFACES
    GELFAND, MP
    FISHER, ME
    PHYSICA A, 1990, 166 (01): : 1 - 74
  • [20] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)