Finite-size and finite-time scaling for kinetic rough interfaces

被引:0
|
作者
Chhimpa, Rahul [1 ]
Yadav, Avinash Chand [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221 005, India
关键词
BALLISTIC DEPOSITION; SURFACE RELAXATION; GROWTH; MODEL; UNIVERSALITY;
D O I
10.1103/PhysRevE.109.054130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider discrete models of kinetic rough interfaces that exhibit space-time scale invariance in heightheight correlation. We use the generic scaling theory of Ramasco et al. [Phys. Rev. Lett. 84, 2199 (2000)] to confirm that the dynamical structure factor of the height profile can uniquely characterize the underlying dynamics. We apply both finite-size and finite-time scaling methods that systematically allow an estimation of the critical exponents and the scaling functions, eventually establishing the universality class accurately. The finitesize scaling analysis offers an alternative way to characterize the anomalous rough interfaces. As an illustration, we investigate a class of self-organized interface models in random media with extremal dynamics. The isotropic version shows a faceted pattern and belongs to the same universality class (as shown numerically) as the Sneppen model (version A). We also examine an anisotropic version of the Sneppen model and suggest that the model belongs to the universality class of the tensionless Kardar-Parisi-Zhang (tKPZ) equation in one dimension.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Finite-size scaling of critical avalanches
    Yadav, Avinash Chand
    Quadir, Abdul
    Jafri, Haider Hasan
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [32] Finite-size scaling of the quasispecies model
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (2-B):
  • [33] Finite-Size Scaling at the Jamming Transition
    Goodrich, Carl P.
    Liu, Andrea J.
    Nagel, Sidney R.
    PHYSICAL REVIEW LETTERS, 2012, 109 (09)
  • [34] Finite-size scaling of meson propagators
    Damgaard, PH
    Diamantini, MC
    Hernández, P
    Jansen, K
    NUCLEAR PHYSICS B, 2002, 629 (1-3) : 445 - 478
  • [35] Finite-size scaling in disordered systems
    Chamati, H
    Korutcheva, E
    Tonchev, NS
    PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 026129
  • [36] Finite-size scaling of eigenstate thermalization
    Beugeling, W.
    Moessner, R.
    Haque, Masudul
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [37] FINITE-SIZE SCALING FOR THE BOSE CONDENSATE
    SINGH, S
    PATHRIA, RK
    CANADIAN JOURNAL OF PHYSICS, 1985, 63 (03) : 358 - 365
  • [38] FINITE-SIZE SCALING FOR POTTS MODELS
    BORGS, C
    KOTECKY, R
    MIRACLESOLE, S
    JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) : 529 - 551
  • [39] FINITE-SIZE SCALING IN THE MULTIPARTICLE PRODUCTION
    BOZEK, P
    PLOSZAJCZAK, M
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 56 (03): : 473 - 477
  • [40] PERCOLATION OF HYPERSURFACES AND FINITE-SIZE SCALING
    KERTESZ, J
    HERRMANN, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (17): : 1109 - 1112