Finite-size and finite-time scaling for kinetic rough interfaces

被引:0
|
作者
Chhimpa, Rahul [1 ]
Yadav, Avinash Chand [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221 005, India
关键词
BALLISTIC DEPOSITION; SURFACE RELAXATION; GROWTH; MODEL; UNIVERSALITY;
D O I
10.1103/PhysRevE.109.054130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider discrete models of kinetic rough interfaces that exhibit space-time scale invariance in heightheight correlation. We use the generic scaling theory of Ramasco et al. [Phys. Rev. Lett. 84, 2199 (2000)] to confirm that the dynamical structure factor of the height profile can uniquely characterize the underlying dynamics. We apply both finite-size and finite-time scaling methods that systematically allow an estimation of the critical exponents and the scaling functions, eventually establishing the universality class accurately. The finitesize scaling analysis offers an alternative way to characterize the anomalous rough interfaces. As an illustration, we investigate a class of self-organized interface models in random media with extremal dynamics. The isotropic version shows a faceted pattern and belongs to the same universality class (as shown numerically) as the Sneppen model (version A). We also examine an anisotropic version of the Sneppen model and suggest that the model belongs to the universality class of the tensionless Kardar-Parisi-Zhang (tKPZ) equation in one dimension.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] FINITE-SIZE SCALING AND CRITICAL NUCLEATION
    MON, KK
    JASNOW, D
    PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2983 - 2986
  • [42] FINITE-SIZE SCALING - NEW RESULTS
    PRIVMAN, V
    PHYSICA A, 1991, 177 (1-3): : 241 - 246
  • [43] FINITE-SIZE SCALING FOR CRITICAL FILMS
    KRECH, M
    DIETRICH, S
    PHYSICAL REVIEW LETTERS, 1991, 66 (03) : 345 - 348
  • [44] Finite-size scaling in stick percolation
    Li, Jiantong
    Zhang, Shi-Li
    PHYSICAL REVIEW E, 2009, 80 (04)
  • [45] Finite-size scaling in the Kuramoto model
    Coletta, Tommaso
    Delabays, Robin
    Jacquod, Philippe
    PHYSICAL REVIEW E, 2017, 95 (04)
  • [46] Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes
    Bejan, A
    JOURNAL OF APPLIED PHYSICS, 1996, 79 (03) : 1191 - 1218
  • [47] FINITE-SIZE SCALING IN ARBITRARY DIMENSIONS
    SINGH, S
    PATHRIA, RK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (20): : 4619 - 4626
  • [48] Finite-size scaling of the error threshold transition in finite populations
    Campos, PRA
    Fontanari, JF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01): : L1 - L7
  • [49] Finite element method for finite-size scaling in quantum mechanics
    Moy, Winton
    Carignano, Marcelo A.
    Kais, Sabre
    JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (24): : 5448 - 5452
  • [50] Magnetic properties of finite systems:: Microcanonical finite-size scaling
    Promberger, M
    Kastner, M
    Hüller, A
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XII, 2000, 85 : 185 - 190