Finite-size and finite-time scaling for kinetic rough interfaces

被引:0
|
作者
Chhimpa, Rahul [1 ]
Yadav, Avinash Chand [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221 005, India
关键词
BALLISTIC DEPOSITION; SURFACE RELAXATION; GROWTH; MODEL; UNIVERSALITY;
D O I
10.1103/PhysRevE.109.054130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider discrete models of kinetic rough interfaces that exhibit space-time scale invariance in heightheight correlation. We use the generic scaling theory of Ramasco et al. [Phys. Rev. Lett. 84, 2199 (2000)] to confirm that the dynamical structure factor of the height profile can uniquely characterize the underlying dynamics. We apply both finite-size and finite-time scaling methods that systematically allow an estimation of the critical exponents and the scaling functions, eventually establishing the universality class accurately. The finitesize scaling analysis offers an alternative way to characterize the anomalous rough interfaces. As an illustration, we investigate a class of self-organized interface models in random media with extremal dynamics. The isotropic version shows a faceted pattern and belongs to the same universality class (as shown numerically) as the Sneppen model (version A). We also examine an anisotropic version of the Sneppen model and suggest that the model belongs to the universality class of the tensionless Kardar-Parisi-Zhang (tKPZ) equation in one dimension.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Finite-Time and Finite-Size Scaling of the Kuramoto Oscillators
    Lee, Mi Jin
    Do Yi, Su
    Kim, Beom Jun
    PHYSICAL REVIEW LETTERS, 2014, 112 (07)
  • [2] Finite-size scaling of kinetic quantities
    Tarasenko, AA
    Nieto, F
    Uebing, C
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (15) : 3437 - 3440
  • [3] Self-Similarity Breaking: Anomalous Nonequilibrium Finite-Size Scaling and Finite-Time Scaling
    袁伟伦
    阴帅
    钟凡
    Chinese Physics Letters, 2021, 38 (02) : 74 - 80
  • [4] Self-Similarity Breaking: Anomalous Nonequilibrium Finite-Size Scaling and Finite-Time Scaling
    Yuan, Weilun
    Yin, Shuai
    Zhong, Fan
    CHINESE PHYSICS LETTERS, 2021, 38 (02)
  • [5] Finite-size correlation length and violations of finite-size scaling
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02): : 255 - 265
  • [6] Finite-size correlation length and violations of finite-size scaling
    S. Caracciolo
    A. Gambassi
    M. Gubinelli
    A. Pelissetto
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 20 (2): : 255 - 265
  • [7] Finite-size scaling in space-time
    Zimmer, MF
    PHYSICAL REVIEW E, 1998, 57 (05): : 5190 - 5195
  • [8] Finite-size scaling in the interfacial stiffness of rough elastic contacts
    Pastewka, Lars
    Prodanov, Nikolay
    Lorenz, Boris
    Mueser, Martin H.
    Robbins, Mark O.
    Persson, Bo N. J.
    PHYSICAL REVIEW E, 2013, 87 (06)
  • [9] Non-universal finite-size scaling of rough surfaces
    Mandal, Pradipta Kumar
    Jana, Debnarayan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (48)
  • [10] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    PHYSICA A, 1993, 195 (1-2): : 215 - 222