Finite-size correlation length and violations of finite-size scaling

被引:0
|
作者
S. Caracciolo
A. Gambassi
M. Gubinelli
A. Pelissetto
机构
[1] Scuola Normale Superiore and INFN,Sezione di Pisa
[2] Università degli Studi di Pisa,Dipartimento di Fisica and INFN
[3] Università degli Studi di Roma “La Sapienza", Sezione di Pisa
关键词
PACS. 05.70.Jk Critical point phenomena – 11.10.Kk Field theories in dimensions other than four – 64.60.-i General studies of phase transitions;
D O I
10.1007/BF01352587
中图分类号
学科分类号
摘要
We address the problem of the definition of the finite-volume correlation length. First, we study the large-N limit of the N-vector model, and we show the existence of several constraints on the definition if regularity of the finite-size scaling functions and correct anomalous behaviour above the upper critical dimension are required. Then, we study in detail a model in which the zero mode is prohibited. Such a model is a generalization of the fixed-magnetization Ising model which is equivalent to the lattice gas. Also in this case, we find that the finite-volume correlation length must satisfy appropriate constraints in order to obtain regular finite-size scaling functions, and, above the upper critical dimension, an anomalous scaling behaviour. The large-N results are confirmed by a one-loop calculation in the lattice φ4 theory.
引用
收藏
页码:255 / 265
页数:10
相关论文
共 50 条
  • [1] Finite-size correlation length and violations of finite-size scaling
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02): : 255 - 265
  • [2] Finite-size scaling of the correlation length in anisotropic systems
    Chen, X. S.
    Zhang, H. Y.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (23-24): : 4212 - 4218
  • [3] Finite-size scaling of correlation functions in finite systems
    Xin Zhang
    GaoKe Hu
    YongWen Zhang
    XiaoTeng Li
    XiaoSong Chen
    [J]. Science China Physics, Mechanics & Astronomy, 2018, 61
  • [4] Finite-size scaling of correlation functions in finite systems
    Xin Zhang
    GaoKe Hu
    YongWen Zhang
    XiaoTeng Li
    XiaoSong Chen
    [J]. Science China(Physics,Mechanics & Astronomy), 2018, 61 (12) : 71 - 77
  • [5] Finite-size scaling of correlation functions in finite systems
    Zhang, Xin
    Hu, GaoKe
    Zhang, YongWen
    Li, XiaoTeng
    Chen, XiaoSong
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (12)
  • [6] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    [J]. PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [7] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264
  • [8] Microcanonical Finite-Size Scaling
    Michael Kastner
    Michael Promberger
    Alfred Hüller
    [J]. Journal of Statistical Physics, 2000, 99 : 1251 - 1264
  • [9] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [10] Corrected finite-size scaling in percolation
    Li, Jiantong
    Ostling, Mikael
    [J]. PHYSICAL REVIEW E, 2012, 86 (04)