Forksheet Field-Effect Transistors for Area Scaling and Gate-Drain Capacitance Reduction in Nanosheet-based CMOS Technologies

被引:0
|
作者
Mertens, H. [1 ]
Horiguchi, N. [1 ]
机构
[1] IMEC, Leuven, Belgium
来源
8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024 | 2024年
关键词
D O I
10.1109/EDTM58488.2024.10511640
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanosheet-based field-effect transistors with dielectric walls between adjacent devices, referred to as forksheet transistors, can improve CMOS scaling by means of (1) space reduction between transistors and (2) gate-drain capacitance reduction. We demonstrate forksheet device fabrication, including self-aligned gate cut formation for lateral channel-channel spaces as small as 12nm. In addition, we discuss pros and cons of different forksheet wall configurations. Dielectric walls positioned at standard cell outer bounds instead of inner bounds have the benefit that wall width scalability is independent of N-P patterning requirements. Source-drain cut patterning is an option to address process-induced wall loss between source-drains.
引用
收藏
页码:756 / 758
页数:3
相关论文
共 50 条
  • [31] A source/drain-on-insulator structure to improve the performance of stacked nanosheet field-effect transistors
    Jegadheesan, V
    Sivasankaran, K.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (03) : 1136 - 1143
  • [32] Nonlinear source and drain resistance in recessed-gate heterostructure field-effect transistors
    Greenberg, DR
    delAlamo, JA
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (08) : 1304 - 1306
  • [33] Advanced CMOS process for floating gate field-effect transistors in bioelectronic applications
    Meyburg, Sven
    Stockmann, Regina
    Moers, Juergen
    Offenhaeusser, Andreas
    Ingebrandt, Sven
    SENSORS AND ACTUATORS B-CHEMICAL, 2007, 128 (01): : 208 - 217
  • [34] Explicit drain current model of junctionless double-gate field-effect transistors
    Yesayan, Ashkhen
    Pregaldiny, Fabien
    Sallese, Jean-Michel
    SOLID-STATE ELECTRONICS, 2013, 89 : 134 - 138
  • [35] Analytical Drain Current Modeling of Double-Gate Tunnel Field-Effect Transistors
    Pal, Arnab
    Dutta, Aloke K.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (08) : 3213 - 3221
  • [36] Flexible high capacitance nanocomposite gate insulator for printed organic field-effect transistors
    Rasul, Amjad
    Zhang, Jie
    Gamota, Dan
    Singh, Manish
    Takoudis, Christos
    THIN SOLID FILMS, 2010, 518 (23) : 7024 - 7028
  • [37] Tungsten Disulfide Nanosheet-Based Field-Effect Transistor Biosensor for DNA Hybridization Detection
    Bahri, Mohamed
    Shi, Biao
    Elaguech, Mohamed Amin
    Djebbi, Khouloud
    Zhou, Daming
    Liang, Liyuan
    Tlili, Chaker
    Wang, Deqiang
    ACS APPLIED NANO MATERIALS, 2022, 5 (04) : 5035 - 5044
  • [38] Nonideality of Negative Capacitance Ge Field-Effect Transistors Without Internal Metal Gate
    Wu, Jibao
    Kanyang, Ruoying
    Han, Genquan
    Zhou, Jiuren
    Liu, Yan
    Wang, Yibo
    Peng, Yue
    Zhang, Jincheng
    Sun, Qing-Qing
    Zhang, David Wei
    Hao, Yue
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (04) : 614 - 617
  • [39] Nanometer-scale InGaAs Field-Effect Transistors for THz and CMOS technologies
    del Alamo, J. A.
    2013 PROCEEDINGS OF THE EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2013, : 16 - 21
  • [40] Device Simulation of Negative-Capacitance Field-Effect Transistors With a Ferroelectric Gate Insulator
    Hattori, Junichi
    Ikegami, Tsutomu
    Fukuda, Koichi
    Ota, Hiroyuki
    Migita, Shinji
    Asai, Hidehiro
    2018 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2018), 2018, : 214 - 219