Forksheet Field-Effect Transistors for Area Scaling and Gate-Drain Capacitance Reduction in Nanosheet-based CMOS Technologies

被引:0
|
作者
Mertens, H. [1 ]
Horiguchi, N. [1 ]
机构
[1] IMEC, Leuven, Belgium
来源
8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024 | 2024年
关键词
D O I
10.1109/EDTM58488.2024.10511640
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanosheet-based field-effect transistors with dielectric walls between adjacent devices, referred to as forksheet transistors, can improve CMOS scaling by means of (1) space reduction between transistors and (2) gate-drain capacitance reduction. We demonstrate forksheet device fabrication, including self-aligned gate cut formation for lateral channel-channel spaces as small as 12nm. In addition, we discuss pros and cons of different forksheet wall configurations. Dielectric walls positioned at standard cell outer bounds instead of inner bounds have the benefit that wall width scalability is independent of N-P patterning requirements. Source-drain cut patterning is an option to address process-induced wall loss between source-drains.
引用
收藏
页码:756 / 758
页数:3
相关论文
共 50 条
  • [21] Fringing field effects in negative capacitance field-effect transistors with a ferroelectric gate insulator
    Hattori, Junichi
    Fukuda, Koichi
    Ikegami, Tsutomu
    Ota, Hiroyuki
    Migita, Shinji
    Asai, Hidehiro
    Toriumi, Akira
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (04)
  • [22] Gate capacitance model for the design of graphene nanoribbon array field-effect transistors
    Son, Myungwoo
    Ki, Hangil
    Kim, Kihyeun
    Chung, Sunki
    Lee, Woong
    Ham, Moon-Ho
    RSC ADVANCES, 2015, 5 (68) : 54861 - 54866
  • [23] Parasitic Capacitance Analysis of Three-Independent-Gate Field-Effect Transistors
    Cadareanu, Patsy
    Romero-Gonzalez, Jorge
    Gaillardon, Pierre-Emmanuel
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2021, 9 : 400 - 408
  • [24] Normally Off WSe2 Nanosheet-Based Field-Effect Transistors with Self-Aligned Contact Doping
    Lee, Dongryul
    An, Jin Yong
    Lee, Chul-Ho
    Bong, Ki Wan
    Kim, Jihyun
    ACS APPLIED NANO MATERIALS, 2022, 5 (12) : 18462 - 18468
  • [25] High capacitance organic field-effect transistors with modified gate insulator surface
    Majewski, LA
    Schroeder, R
    Grell, M
    Glarvey, PA
    Turner, ML
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (10) : 5781 - 5787
  • [26] Analytic Model for the Surface Potential and Drain Current in Negative Capacitance Field-Effect Transistors
    Jimenez, David
    Miranda, Enrique
    Godoy, Andres
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (10) : 2405 - 2409
  • [27] High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors
    Giusi, G.
    Giordano, O.
    Scandurra, G.
    Rapisarda, M.
    Calvi, S.
    Ciofi, C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (04):
  • [28] A Process-Aware Analytical Gate Resistance Model for Nanosheet Field-Effect Transistors
    Suk, Junha
    Kim, Yohan
    Do, Jungho
    Kim, Garoom
    Rim, Woojin
    Baek, Sanghoon
    Yoon, Seiseung
    Kim, Soyoung
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 898 - 904
  • [29] A source/drain-on-insulator structure to improve the performance of stacked nanosheet field-effect transistors
    V. Jegadheesan
    K. Sivasankaran
    Journal of Computational Electronics, 2020, 19 : 1136 - 1143
  • [30] Scaling Challenges of Nanosheet Field-Effect Transistors Into Sub-2 nm Nodes
    Alabdullah, Murad G. K.
    Elmessary, M. A.
    Nagy, D.
    Seoane, N.
    Garcia-Loureiro, A. J.
    Kalna, K.
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 479 - 485