Forksheet Field-Effect Transistors for Area Scaling and Gate-Drain Capacitance Reduction in Nanosheet-based CMOS Technologies

被引:0
|
作者
Mertens, H. [1 ]
Horiguchi, N. [1 ]
机构
[1] IMEC, Leuven, Belgium
来源
8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024 | 2024年
关键词
D O I
10.1109/EDTM58488.2024.10511640
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanosheet-based field-effect transistors with dielectric walls between adjacent devices, referred to as forksheet transistors, can improve CMOS scaling by means of (1) space reduction between transistors and (2) gate-drain capacitance reduction. We demonstrate forksheet device fabrication, including self-aligned gate cut formation for lateral channel-channel spaces as small as 12nm. In addition, we discuss pros and cons of different forksheet wall configurations. Dielectric walls positioned at standard cell outer bounds instead of inner bounds have the benefit that wall width scalability is independent of N-P patterning requirements. Source-drain cut patterning is an option to address process-induced wall loss between source-drains.
引用
收藏
页码:756 / 758
页数:3
相关论文
共 50 条
  • [41] ANALOG DEVICE BASED ON FIELD-EFFECT TRANSISTORS WITH AN INSULATED GATE
    VICHEV, BI
    MEASUREMENT TECHNIQUES-USSR, 1971, 14 (03): : 423 - &
  • [42] Contribution of carrier tunneling and gate induced drain leakage effects to the gate and drain currents of fin-shaped field-effect transistors
    Garduno, S. I.
    Cerdeira, A.
    Estrada, M.
    Alvarado, J.
    Kilchytska, V.
    Flandre, D.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [43] Compensation for the Nonlinearity of the Drain–Gate I–V Characteristic in Field-Effect Transistors with a Gate Length of ~100 nm
    E. A. Tarasova
    S. V. Obolensky
    S. V. Khazanova
    N. N. Grigoryeva
    O. L. Golikov
    A. B. Ivanov
    A. S. Puzanov
    Semiconductors, 2020, 54 : 1155 - 1160
  • [44] Fabrication of Vertically Stacked Nanosheet Junctionless Field-Effect Transistors and Applications for the CMOS and CFET Inverters
    Sung, Po-Jung
    Chang, Shu-Wei
    Kao, Kuo-Hsing
    Wu, Chien-Ting
    Su, Chun-Jung
    Cho, Ta-Chun
    Hsueh, Fu-Kuo
    Lee, Wen-Hsi
    Lee, Yao-Jen
    Chao, Tien-Sheng
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (09) : 3504 - 3509
  • [45] Simulation study on effect of drain underlap in gate-all-around tunneling field-effect transistors
    Lee, Jae Sung
    Seo, Jae Hwa
    Cho, Seongjae
    Lee, Jung-Hee
    Kang, Shin-Won
    Bae, Jin-Hyuk
    Cho, Eou-Sik
    Kang, In Man
    CURRENT APPLIED PHYSICS, 2013, 13 (06) : 1143 - 1149
  • [46] Stacked Nanosheet Gate-All-Around Morphotropic Phase Boundary Field-Effect Transistors
    Kim, Sihyun
    Kim, Hyun-Min
    Kwon, Ki-Ryun
    Kwon, Daewoong
    ADVANCED SCIENCE, 2025,
  • [48] Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorus Nanosheet-Based Field-Effect Transistors with P(VDF-TrFE) Polymer
    Lee, Young Tack
    Kwon, Hyeokjae
    Kim, Jin Sung
    Kim, Hong-Hee
    Lee, Yun Jae
    Lim, Jung Ah
    Song, Yong-Won
    Yi, Yeonjin
    Choi, Won-Kook
    Hwang, Do Kyung
    Im, Seongil
    ACS NANO, 2015, 9 (10) : 10394 - 10401
  • [49] TCAD Simulations of graphene field-effect transistors based on the quantum capacitance effect
    Hafsi, Bilel
    Boubaker, Aimen
    Ismail, Naoufel
    Kalboussi, Adel
    Lmimouni, Kamal
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 67 (07) : 1201 - 1207
  • [50] Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes
    Wind, SJ
    Appenzeller, J
    Martel, R
    Derycke, V
    Avouris, P
    APPLIED PHYSICS LETTERS, 2002, 80 (20) : 3817 - 3819