SYMMETRIC IDENTITIES FOR DEGENERATE q-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

被引:5
|
作者
Jung, N. S. [1 ]
Ryoo, C. S. [2 ]
机构
[1] Hannam Univ, Coll Talmage Liberal Arts, Daejeon 34430, South Korea
[2] Hannam Univ, Dept Math, Daejeon 34430, South Korea
来源
关键词
degenerate poly-Bernoulli polynomials; degenerate q-poly-Bernoulli polynomials; Stirling numbers of the second kind; q-polylogarithm function;
D O I
10.14317/jami.2018.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a degenerate q-poly-Bernoulli numbers and polynomials include q-logarithm function. We derive some relations with this polynomials and the Stirling numbers of second kind and investigate some symmetric identities using special functions that are involving this polynomials.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
  • [1] On Generalized q-Poly-Bernoulli Numbers and Polynomials
    Bilgic, Secil
    Kurt, Veli
    FILOMAT, 2020, 34 (02) : 515 - 520
  • [2] IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Jung, N. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (5-6): : 601 - 609
  • [3] SOME RESULTS FOR q-POLY-BERNOULLI POLYNOMIALS WITH A PARAMETER
    Mechacha, M.
    Boutiche, M. A.
    Rahmani, M.
    Behloul, D.
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 355 - 363
  • [4] Symmetric identities for degenerate generalized Bernoulli polynomials
    Kim, Taekyun
    Dolgy, Dmitry V.
    Kim, Dae San
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02): : 677 - 683
  • [5] Symmetric Identities on Modified Degenerate Bernoulli Polynomials
    Su, Qi-Peng
    Pan, Hao
    JOURNAL OF INTEGER SEQUENCES, 2024, 27 (05)
  • [6] Symmetric identities for Carlitz's q-Bernoulli numbers and polynomials
    He, Yuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [7] Symmetric identities for Carlitz’s q-Bernoulli numbers and polynomials
    Yuan He
    Advances in Difference Equations, 2013
  • [8] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Taekyun Kim
    Dae San Kim
    Hyuck-In Kwon
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 749 - 753
  • [9] Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
    Dolgy, Dmitry, V
    Kim, Dae San
    Kwon, Jongkyum
    Kim, Taekyun
    SYMMETRY-BASEL, 2019, 11 (07):
  • [10] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A3): : 749 - 753