IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

被引:0
|
作者
Jung, N. S. [1 ]
机构
[1] Hannam Univ, Coll Talmage Liberal Arts, Daejeon 34430, South Korea
来源
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS | 2020年 / 38卷 / 5-6期
基金
新加坡国家研究基金会;
关键词
(p; q)-polylogarithm function; Stirling numbers of the second kind; degenerate Bernoulli polynomials; degenerate generalized (p; q)-poly-Bernoulli polynomials; BERNOULLI POLYNOMIALS;
D O I
10.14317/jami.2020.601
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce degenerate generalized poly-Bernoulli numbers and polynomials with (p, q)-logarithm function. We find some identities that are concerned with the Stirling numbers of second kind and derive symmetric identities by using generalized falling factorial sum.
引用
收藏
页码:601 / 609
页数:9
相关论文
共 50 条
  • [1] A note on degenerate poly-Bernoulli numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2015
  • [2] A note on degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [3] Fully degenerate poly-Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Seo, Jong-Jin
    OPEN MATHEMATICS, 2016, 14 : 545 - 556
  • [4] Degenerate Hermite poly-Bernoulli numbers and polynomials with q-parameter
    Khan, Waseem A.
    Khan, Idrees A.
    Ali, Musharraf
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (01): : 3 - 15
  • [5] Poly-Bernoulli numbers and polynomials with a q parameter
    Cenkci, Mehmet
    Komatsu, Takao
    JOURNAL OF NUMBER THEORY, 2015, 152 : 38 - 54
  • [6] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [7] FULLY DEGENERATE HERMITE POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Khan, W. A.
    Nisar, K. S.
    Araci, S.
    Acikgoz, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (06): : 461 - 478
  • [8] Fully degenerate poly-Bernoulli polynomials with a q parameter
    Kim, Dae San
    Kim, Tae Kyun
    Mansour, Toufik
    Seo, Jong-Jin
    FILOMAT, 2016, 30 (04) : 1029 - 1035
  • [9] SYMMETRIC IDENTITIES FOR DEGENERATE q-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Jung, N. S.
    Ryoo, C. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (1-2): : 29 - 38
  • [10] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386