Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials

被引:1
|
作者
Dolgy, Dmitry, V [1 ]
Kim, Dae San [2 ]
Kwon, Jongkyum [3 ]
Kim, Taekyun [4 ]
机构
[1] Kwangwoon Univ, Hanrimwon, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
[3] Gyeongsang Natl Univ, Dept Math Educ & ERI, Jinju 52828, Gyeongsangnamdo, South Korea
[4] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 07期
基金
新加坡国家研究基金会;
关键词
Bernoulli polynomials; degenerate Bernoulli polynomials; random variables; p-adic invariant integral on Z(p); integer power sums polynomials; Stirling polynomials of the second kind; degenerate Stirling polynomials of the second kind;
D O I
10.3390/sym11070847
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant integrals on Z(p). In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Taekyun Kim
    Dae San Kim
    Hyuck-In Kwon
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 749 - 753
  • [2] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A3): : 749 - 753
  • [3] Some Identities Relating to Degenerate Bernoulli Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    FILOMAT, 2016, 30 (04) : 905 - 912
  • [4] Some identities related to degenerate Bernoulli and degenerate Euler polynomials
    Kim, Taekyun
    Kim, Dae San
    Kim, Wonjoo
    Kwon, Jongkyum
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 882 - 897
  • [5] Some Identities of Fully Degenerate Bernoulli Polynomials Associated with Degenerate Bernstein Polynomials
    Lee, Jeong Gon
    Kim, Wonjoo
    Jang, Lee-Chae
    SYMMETRY-BASEL, 2019, 11 (05):
  • [6] Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials
    Min-Soo Kim
    Taekyun Kim
    Byungje Lee
    Cheon-Seoung Ryoo
    Advances in Difference Equations, 2010
  • [7] Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials
    Kim, Min-Soo
    Kim, Taekyun
    Lee, Byungje
    Ryoo, Cheon-Seoung
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [8] Identities for Bernoulli polynomials and Bernoulli numbers
    Alzer, Horst
    Kwong, Man Kam
    ARCHIV DER MATHEMATIK, 2014, 102 (06) : 521 - 529
  • [9] Identities for Bernoulli polynomials and Bernoulli numbers
    Horst Alzer
    Man Kam Kwong
    Archiv der Mathematik, 2014, 102 : 521 - 529
  • [10] Some identities involving Bernoulli, Euler and degenerate Bernoulli numbers and their applications
    Kim, Taekyun
    Kim, Dae San
    Kim, Hye Kyung
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):