Identities for Bernoulli polynomials and Bernoulli numbers

被引:1
|
作者
Alzer, Horst [1 ]
Kwong, Man Kam [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hunghom, Hong Kong, Peoples R China
关键词
Bernoulli polynomials; Bernoulli numbers; identities; RECURRENCE FORMULA;
D O I
10.1007/s00013-014-0653-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if m and v are integers with and 0 <= v <= m and x is a real number, then [GRAPHICS] [GRAPHICS] where B (n) (x) denotes the Bernoulli polynomial of degree n. An application of (1) leads to new identities for Bernoulli numbers B (n) . Among others, we obtain [GRAPHICS] This formula extends two results obtained by Kaneko and Chen-Sun, who proved (2) for the special cases j = 1,v=0 and j = 3, v=0, respectively.
引用
收藏
页码:521 / 529
页数:9
相关论文
共 50 条
  • [1] Identities for Bernoulli polynomials and Bernoulli numbers
    Horst Alzer
    Man Kam Kwong
    [J]. Archiv der Mathematik, 2014, 102 : 521 - 529
  • [2] IDENTITIES FOR THE BERNOULLI AND EULER NUMBERS AND POLYNOMIALS
    Kim, T.
    Lee, B.
    Lee, S. H.
    Rim, S-H.
    [J]. ARS COMBINATORIA, 2012, 107 : 325 - 337
  • [3] IDENTITIES ON THE BERNOULLI AND THE EULER NUMBERS AND POLYNOMIALS
    Kim, T.
    Kim, D. S.
    Bayad, A.
    Rim, S. -H.
    [J]. ARS COMBINATORIA, 2012, 107 : 455 - 463
  • [4] Identities Related to the Bernoulli and the Euler Numbers and Polynomials
    Al, Busra
    Alkan, Mustafa
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [5] Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials
    Min-Soo Kim
    Taekyun Kim
    Byungje Lee
    Cheon-Seoung Ryoo
    [J]. Advances in Difference Equations, 2010
  • [6] Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials
    Kim, Min-Soo
    Kim, Taekyun
    Lee, Byungje
    Ryoo, Cheon-Seoung
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [7] Congruences for Bernoulli numbers and Bernoulli polynomials
    Sun, ZH
    [J]. DISCRETE MATHEMATICS, 1997, 163 (1-3) : 153 - 163
  • [8] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Taekyun Kim
    Dae San Kim
    Hyuck-In Kwon
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 749 - 753
  • [9] Some Identities of Symmetry for the Generalized Bernoulli Numbers and Polynomials
    Kim, Taekyun
    Rim, Seog-Hoon
    Lee, Byungje
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [10] Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
    Dolgy, Dmitry, V
    Kim, Dae San
    Kwon, Jongkyum
    Kim, Taekyun
    [J]. SYMMETRY-BASEL, 2019, 11 (07):