Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials

被引:0
|
作者
Min-Soo Kim
Taekyun Kim
Byungje Lee
Cheon-Seoung Ryoo
机构
[1] KAIST,Department of Mathematics
[2] Kwangwoon University,Division of General Education
[3] Kwangwoon University,Mathematics
[4] Hannam University,Department of Wireless Communications Engineering
关键词
Prime Number; Algebraic Closure; Basis Polynomial; Bernstein Polynomial; Bernoulli Number;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate some interesting properties of the Bernstein polynomials related to the bosonic [inline-graphic not available: see fulltext]-adic integrals on [inline-graphic not available: see fulltext].
引用
收藏
相关论文
共 50 条
  • [1] Some Identities of Bernoulli Numbers and Polynomials Associated with Bernstein Polynomials
    Kim, Min-Soo
    Kim, Taekyun
    Lee, Byungje
    Ryoo, Cheon-Seoung
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [2] Some Identities of Fully Degenerate Bernoulli Polynomials Associated with Degenerate Bernstein Polynomials
    Lee, Jeong Gon
    Kim, Wonjoo
    Jang, Lee-Chae
    [J]. SYMMETRY-BASEL, 2019, 11 (05):
  • [3] SOME IDENTITIES OF THE TWISTED (h, q)-EULER NUMBERS AND POLYNOMIALS ASSOCIATED WITH BERNSTEIN POLYNOMIALS
    Ryoo, C. S.
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (04) : 602 - 608
  • [4] Identities for Bernoulli polynomials and Bernoulli numbers
    Alzer, Horst
    Kwong, Man Kam
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (06) : 521 - 529
  • [5] Identities for Bernoulli polynomials and Bernoulli numbers
    Horst Alzer
    Man Kam Kwong
    [J]. Archiv der Mathematik, 2014, 102 : 521 - 529
  • [6] Some Identities on Bernoulli and Hermite Polynomials Associated with Jacobi Polynomials
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry V.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [7] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Taekyun Kim
    Dae San Kim
    Hyuck-In Kwon
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 749 - 753
  • [8] Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
    Dolgy, Dmitry, V
    Kim, Dae San
    Kwon, Jongkyum
    Kim, Taekyun
    [J]. SYMMETRY-BASEL, 2019, 11 (07):
  • [9] Some Identities of Symmetry for the Generalized Bernoulli Numbers and Polynomials
    Kim, Taekyun
    Rim, Seog-Hoon
    Lee, Byungje
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [10] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A3): : 749 - 753