Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials

被引:0
|
作者
Taekyun Kim
Dae San Kim
Hyuck-In Kwon
机构
[1] Tianjin Polytechnic University,Department of Mathematics
[2] Kwangwoon University,Department of Mathematics
[3] Sogang University,Department of Mathematics
关键词
Carlitz degenerate Bernoulli numbers; Polynomials; Degenerate Riemann zeta function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Carlitz’s degenerate Bernoulli numbers and polynomials, and give some formulae and identities related to those numbers and polynomials.
引用
收藏
页码:749 / 753
页数:4
相关论文
共 50 条
  • [1] Some Identities of Carlitz Degenerate Bernoulli Numbers and Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A3): : 749 - 753
  • [2] Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
    Dolgy, Dmitry, V
    Kim, Dae San
    Kwon, Jongkyum
    Kim, Taekyun
    [J]. SYMMETRY-BASEL, 2019, 11 (07):
  • [3] SOME IDENTITIES ON THE EXTENDED CARLITZ'S q-BERNOULLI NUMBERS AND POLYNOMIALS
    Rim, Seog-Hoon
    Kim, Tae-Kyun
    Lee, Byung-Je
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (03) : 536 - 543
  • [4] On modified degenerate Carlitz q-Bernoulli numbers and polynomials
    Lee, Jeong Gon
    Jang, Lee-Chae
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [5] On modified degenerate Carlitz q-Bernoulli numbers and polynomials
    Jeong Gon Lee
    Lee-Chae Jang
    [J]. Advances in Difference Equations, 2017
  • [6] SOME NEW IDENTITIES FOR BERNOULLI-CARLITZ NUMBERS
    GEKELER, EU
    [J]. JOURNAL OF NUMBER THEORY, 1989, 33 (02) : 209 - 219
  • [7] Symmetric identities for Carlitz’s q-Bernoulli numbers and polynomials
    Yuan He
    [J]. Advances in Difference Equations, 2013
  • [8] Symmetric identities for Carlitz's q-Bernoulli numbers and polynomials
    He, Yuan
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [9] Some Identities Relating to Degenerate Bernoulli Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    [J]. FILOMAT, 2016, 30 (04) : 905 - 912
  • [10] Some Symmetric Identities for Degenerate Carlitz-type (p, q)-Euler Numbers and Polynomials
    Hwang, Kyung-Won
    Ryoo, Cheon Seoung
    [J]. SYMMETRY-BASEL, 2019, 11 (06):