SYMMETRIC IDENTITIES FOR DEGENERATE q-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

被引:5
|
作者
Jung, N. S. [1 ]
Ryoo, C. S. [2 ]
机构
[1] Hannam Univ, Coll Talmage Liberal Arts, Daejeon 34430, South Korea
[2] Hannam Univ, Dept Math, Daejeon 34430, South Korea
来源
关键词
degenerate poly-Bernoulli polynomials; degenerate q-poly-Bernoulli polynomials; Stirling numbers of the second kind; q-polylogarithm function;
D O I
10.14317/jami.2018.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a degenerate q-poly-Bernoulli numbers and polynomials include q-logarithm function. We derive some relations with this polynomials and the Stirling numbers of second kind and investigate some symmetric identities using special functions that are involving this polynomials.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
  • [21] SYMMETRIC IDENTITIES FOR DEGENERATE CARLITZ-TYPE q-EULER NUMBERS AND POLYNOMIALS
    Ryoo, Cheon Seoung
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2019, 37 (3-4): : 259 - 270
  • [22] Identities for Bernoulli polynomials and Bernoulli numbers
    Horst Alzer
    Man Kam Kwong
    Archiv der Mathematik, 2014, 102 : 521 - 529
  • [23] On modified degenerate Carlitz q-Bernoulli numbers and polynomials
    Jeong Gon Lee
    Lee-Chae Jang
    Advances in Difference Equations, 2017
  • [24] On modified degenerate Carlitz q-Bernoulli numbers and polynomials
    Lee, Jeong Gon
    Jang, Lee-Chae
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [25] Symmetric identities on Bernoulli polynomials
    Fu, Amy M.
    Pan, Hao
    Zhang, Iris F.
    JOURNAL OF NUMBER THEORY, 2009, 129 (11) : 2696 - 2701
  • [26] A STUDY ON DEGENERATE ( p, q, h )- BERNOULLI POLYNOMIALS AND NUMBERS
    Lee, Hui Young
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (05): : 1145 - 1153
  • [27] A NOTE ON DEGENERATE MULTI-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Kim, Taekyun
    Kim, Dae San
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2023, 17 (01) : 47 - 56
  • [28] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [29] FULLY DEGENERATE HERMITE POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Khan, W. A.
    Nisar, K. S.
    Araci, S.
    Acikgoz, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (06): : 461 - 478
  • [30] Some Symmetric Identities for Degenerate Carlitz-type (p, q)-Euler Numbers and Polynomials
    Hwang, Kyung-Won
    Ryoo, Cheon Seoung
    SYMMETRY-BASEL, 2019, 11 (06):