THE DIAGONAL MAP IN HOMOLOGY OF LEIBNIZ ALGEBRAS

被引:0
|
作者
OUDOM, JM
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field and let g be a Leibniz algebra over k. The diagonal map g --> g + g induces a graded linear map HL(*) (g) --> HL(*) (g + g) where HL(*) stands for Leibniz homology. By using the Kunneth style formula of [5], we obtain a graded linear map Phi : HL(*) (g) --> HL(*) (g) * HL(*) (g) = k + HL(*)($) over bar ($) over bar (g) + HL(*)($) over bar ($) over bar (g) + (HL(*)($) over bar ($) over bar (g) x HL(*)($) over bar ($) over bar (g)) + ..., where HL(*)($) over bar ($) over bar (g) = +(p greater than or equal to 1) HL(p) (g). Let Delta be the projection of Phi onto the first factor HL(*)($) over bar ($) over bar (g) x HL(*)($) over bar ($) over bar (g) then Delta defines a coproduct on HL(*)($) over bar ($) over bar (g). We will first see how strongly related to a cup-product in Leibniz cohomology Delta is. Next, we will give a complete description of Phi according to Delta.
引用
收藏
页码:1165 / 1170
页数:6
相关论文
共 50 条
  • [41] Thin Leibniz algebras
    Omirov, B. A.
    MATHEMATICAL NOTES, 2006, 80 (1-2) : 244 - 253
  • [42] Leibniz homology of dialgebras of matrices
    Frabetti, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (02) : 123 - 141
  • [43] Leibniz homology of the Galilei algebra
    Biyogmam, Guy Roger
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
  • [44] On the toroidal Leibniz algebras
    Liu, Dong
    Lin, Lei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) : 227 - 240
  • [45] Cohomology of Leibniz Algebras
    Wagemann F.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2023, 125 (4) : 239 - 264
  • [46] On the anticommutativity in Leibniz algebras
    Kurdachenko, Leonid A.
    Semko, Nikolaj N.
    Subbotin, Igor Ya
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (01): : 97 - 109
  • [47] On split Leibniz algebras
    Calderon Martin, Antonio J.
    Sanchez Delgado, Jose M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) : 1651 - 1663
  • [48] Representations of Leibniz Algebras
    Fialowski, A.
    Mihalka, E. Zs.
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (02) : 477 - 490
  • [49] On the commutator in Leibniz algebras
    Dzhumadil'daev, A. S.
    Ismailov, N. A.
    Sartayev, B. K.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (04) : 785 - 805
  • [50] LEIBNIZ AND HOCHSCHILD HOMOLOGY THEORIES
    CUVIER, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (09): : 569 - 572