On the commutator in Leibniz algebras

被引:1
|
作者
Dzhumadil'daev, A. S. [1 ,2 ]
Ismailov, N. A. [2 ,3 ]
Sartayev, B. K. [4 ,5 ]
机构
[1] Kazakh British Tech Univ, Alma Ata, Kazakhstan
[2] St Petersburg Univ, St Petersburg, Russia
[3] Astana IT Univ, Nur Sultan, Kazakhstan
[4] Sobolev Inst Math, Novosibirsk, Russia
[5] Suleyman Demirel Univ, Kaskelen, Kazakhstan
基金
俄罗斯科学基金会;
关键词
Leibniz algebras; commutator; anti-commutator; polynomial identities; computer algebra;
D O I
10.1142/S0218196722500333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the class of algebras embeddable into Leibniz algebras with respect to the commutator product is not a variety. It is shown that every commutative metabelain algebra is embeddable into Leibniz algebras with respect to the anti-commutator. Furthermore, we study polynomial identities satisfied by the commutator in every Leibniz algebra. We extend the result of Dzhumadil'daev in [A. S. Dzhumadil'daev, q-Leibniz algebras, Serdica Math. J. 34(2) (2008) 415-440]. to identities up to degree 7 and give a conjecture on identities of higher degrees. As a consequence, we obtain an example of a non-Spechtian variety of anticommutative algebras.
引用
收藏
页码:785 / 805
页数:21
相关论文
共 50 条