THE DIAGONAL MAP IN HOMOLOGY OF LEIBNIZ ALGEBRAS

被引:0
|
作者
OUDOM, JM
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field and let g be a Leibniz algebra over k. The diagonal map g --> g + g induces a graded linear map HL(*) (g) --> HL(*) (g + g) where HL(*) stands for Leibniz homology. By using the Kunneth style formula of [5], we obtain a graded linear map Phi : HL(*) (g) --> HL(*) (g) * HL(*) (g) = k + HL(*)($) over bar ($) over bar (g) + HL(*)($) over bar ($) over bar (g) + (HL(*)($) over bar ($) over bar (g) x HL(*)($) over bar ($) over bar (g)) + ..., where HL(*)($) over bar ($) over bar (g) = +(p greater than or equal to 1) HL(p) (g). Let Delta be the projection of Phi onto the first factor HL(*)($) over bar ($) over bar (g) x HL(*)($) over bar ($) over bar (g) then Delta defines a coproduct on HL(*)($) over bar ($) over bar (g). We will first see how strongly related to a cup-product in Leibniz cohomology Delta is. Next, we will give a complete description of Phi according to Delta.
引用
收藏
页码:1165 / 1170
页数:6
相关论文
共 50 条
  • [31] Leibniz and Hochschild homology
    Altawallbeh, Zuhier
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 62 - 68
  • [32] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [33] ISOTONE FUNCTIONS ON PARTIALLY ORDERED LINEAR ALGEBRAS WITH A MULTIPLICATIVE DIAGONAL MAP
    DAI, TY
    DEMARR, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 65 (01) : 11 - 15
  • [34] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Stitzinger, Ernie
    White, Ashley
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (03) : 627 - 633
  • [35] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Ernie Stitzinger
    Ashley White
    Algebras and Representation Theory, 2018, 21 : 627 - 633
  • [36] Representations of Leibniz Algebras
    A. Fialowski
    É. Zs. Mihálka
    Algebras and Representation Theory, 2015, 18 : 477 - 490
  • [37] Subinvariance in Leibniz algebras
    Misra, Kailash C.
    Stitzinger, Ernie
    Yu, Xingjian
    JOURNAL OF ALGEBRA, 2021, 567 : 128 - 138
  • [38] Leibniz algebras constructed by Witt algebras
    Camacho, L. M.
    Omirov, B. A.
    Kurbanbaev, T. K.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 2048 - 2064
  • [39] Leibniz algebras with derivations
    Apurba Das
    Journal of Homotopy and Related Structures, 2021, 16 : 245 - 274
  • [40] Thin Leibniz algebras
    B. A. Omirov
    Mathematical Notes, 2006, 80 : 244 - 253