THE DIAGONAL MAP IN HOMOLOGY OF LEIBNIZ ALGEBRAS

被引:0
|
作者
OUDOM, JM
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field and let g be a Leibniz algebra over k. The diagonal map g --> g + g induces a graded linear map HL(*) (g) --> HL(*) (g + g) where HL(*) stands for Leibniz homology. By using the Kunneth style formula of [5], we obtain a graded linear map Phi : HL(*) (g) --> HL(*) (g) * HL(*) (g) = k + HL(*)($) over bar ($) over bar (g) + HL(*)($) over bar ($) over bar (g) + (HL(*)($) over bar ($) over bar (g) x HL(*)($) over bar ($) over bar (g)) + ..., where HL(*)($) over bar ($) over bar (g) = +(p greater than or equal to 1) HL(p) (g). Let Delta be the projection of Phi onto the first factor HL(*)($) over bar ($) over bar (g) x HL(*)($) over bar ($) over bar (g) then Delta defines a coproduct on HL(*)($) over bar ($) over bar (g). We will first see how strongly related to a cup-product in Leibniz cohomology Delta is. Next, we will give a complete description of Phi according to Delta.
引用
收藏
页码:1165 / 1170
页数:6
相关论文
共 50 条
  • [21] A non-abelian exterior product and homology of Leibniz algebras
    Donadze, Guram
    Garcia-Martinez, Xabier
    Khmaladze, Emzar
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (01): : 217 - 236
  • [22] (Co)Homology and universal central extension of Hom-Leibniz algebras
    Yong Sheng Cheng
    Yu Cai Su
    Acta Mathematica Sinica, English Series, 2011, 27 : 813 - 830
  • [23] (Co)Homology and universal central extension of Hom-Leibniz algebras
    Cheng, Yong Sheng
    Su, Yu Cai
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (05) : 813 - 830
  • [24] The non-abelian tensor product and the second homology of Leibniz algebras
    Hosseini, Seyedeh Narges
    Edalatzadeh, Behrouz
    Salemkar, Ali Reza
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 759 - 770
  • [25] The second Leibniz homology group for Kac-Moody Lie algebras
    Gao, Y
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 25 - 33
  • [26] PARTIALLY ORDERED LINEAR ALGEBRAS WITH MULTIPLICATIVE DIAGONAL MAP
    DAI, TY
    DEMARR, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 224 (01) : 179 - 187
  • [27] ON LEIBNIZ HOMOLOGY
    PIRASHVILI, T
    ANNALES DE L INSTITUT FOURIER, 1994, 44 (02) : 401 - 411
  • [28] SECOND HOMOLOGY GROUPS AND UNIVERSAL COVERINGS OF STEINBERG LEIBNIZ ALGEBRAS OF SMALL CHARACTERISTIC
    Jiang, Qifen
    Shen, Ran
    Su, Yucai
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 548 - 566
  • [29] From Leibniz homology to cyclic homology
    Lodder, JM
    K-THEORY, 2002, 27 (04): : 359 - 370
  • [30] On Leibniz algebras
    Ayupov, SA
    Omirov, BA
    ALGEBRA AND OPERATOR THEORY, 1998, : 1 - 12