On minimum cutsets in independent domination vertex-critical graphs

被引:0
|
作者
Ananchuen, Nawarat [1 ]
Ruangthampisan, Sriphan [2 ]
Ananchuen, Watcharaphong [3 ]
Caccetta, Louis [3 ]
机构
[1] Ctr Excellence Math, CHE, Si Ayutthaya Rd, Bangkok 10400, Thailand
[2] Silpakorn Univ, Fac Sci, Dept Math, Nakhon Pathom 73000, Thailand
[3] Curtin Univ, Dept Math & Stat, Western Australian Ctr Excellence Ind Optimisat, GPO Box U1987, Perth, WA 6845, Australia
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let gamma(i)(G) denote the independent domination number of G. A graph G is said to be k-gamma(i)-vertex-critical if gamma(i)(G) = k and for each x is an element of V (G), gamma(i)(G - x) < k. In this paper, we show that for any k-gamma(i)-vertex-critical graph H of order n with k >= 3, there exists an n-connected k-gamma(i)-vertexcritical graph G(H) containing H as an induced subgraph. Consequently, there are infinitely many non-isomorphic connected k-gamma(i)-vertex-critical graphs. We also establish a number of properties of connected 3-gamma(i)-vertex-critical graphs. In particular, we derive an upper bound on omega(G-S), the number of components of G-S when G is a connected 3-gamma(i)-vertex-critical graph and S is a minimum cutset of G with vertical bar S vertical bar >= 3.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 50 条
  • [31] SPLIT DOMINATION VERTEX AND EDGE CRITICAL GRAPHS
    Girish, V. R.
    Usha, P.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2020, 26 (01) : 55 - 63
  • [32] Vertex and edge critical Roman domination in graphs
    Rad, Nader Jafari
    Hansberg, Adriana
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2013, 92 : 73 - 88
  • [33] CONNECTED MAJORITY DOMINATION VERTEX CRITICAL GRAPHS
    Manora, J. Joseline
    Vairavel, T. Muthukani
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 112 - 123
  • [34] INDEPENDENT DOMINATION NUMBER OF GRAPHS THROUGH VERTEX SWITCHING
    Parveen, S. Thilsath
    Balamurugan, B. J.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (02): : 508 - 519
  • [35] GRAPHS WHICH ARE VERTEX-CRITICAL WITH RESPECT TO THE EDGE-CHROMATIC NUMBER
    HILTON, AJW
    JOHNSON, PD
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 102 : 211 - 221
  • [36] Domination critical graphs with higher independent domination numbers
    Ao, S
    Cockayne, EJ
    MacGillivray, G
    Mynhardt, CM
    JOURNAL OF GRAPH THEORY, 1996, 22 (01) : 9 - 14
  • [37] Perfect matchings in paired domination vertex critical graphs
    Shenwei Huang
    Erfang Shan
    Liying Kang
    Journal of Combinatorial Optimization, 2012, 23 : 507 - 518
  • [38] THE DIAMETER OF PAIRED-DOMINATION VERTEX CRITICAL GRAPHS
    Henning, Michael A.
    Mynhardt, Christina M.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 887 - 897
  • [39] A constructive characterization of total domination vertex critical graphs
    Wang, Chunxiang
    Hu, Zhiquan
    Li, Xiangwen
    DISCRETE MATHEMATICS, 2009, 309 (04) : 991 - 996
  • [40] Matching Properties in Total Domination Vertex Critical Graphs
    Wang, Haichao
    Kang, Liying
    Shan, Erfang
    GRAPHS AND COMBINATORICS, 2009, 25 (06) : 851 - 861