On minimum cutsets in independent domination vertex-critical graphs

被引:0
|
作者
Ananchuen, Nawarat [1 ]
Ruangthampisan, Sriphan [2 ]
Ananchuen, Watcharaphong [3 ]
Caccetta, Louis [3 ]
机构
[1] Ctr Excellence Math, CHE, Si Ayutthaya Rd, Bangkok 10400, Thailand
[2] Silpakorn Univ, Fac Sci, Dept Math, Nakhon Pathom 73000, Thailand
[3] Curtin Univ, Dept Math & Stat, Western Australian Ctr Excellence Ind Optimisat, GPO Box U1987, Perth, WA 6845, Australia
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let gamma(i)(G) denote the independent domination number of G. A graph G is said to be k-gamma(i)-vertex-critical if gamma(i)(G) = k and for each x is an element of V (G), gamma(i)(G - x) < k. In this paper, we show that for any k-gamma(i)-vertex-critical graph H of order n with k >= 3, there exists an n-connected k-gamma(i)-vertexcritical graph G(H) containing H as an induced subgraph. Consequently, there are infinitely many non-isomorphic connected k-gamma(i)-vertex-critical graphs. We also establish a number of properties of connected 3-gamma(i)-vertex-critical graphs. In particular, we derive an upper bound on omega(G-S), the number of components of G-S when G is a connected 3-gamma(i)-vertex-critical graph and S is a minimum cutset of G with vertical bar S vertical bar >= 3.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 50 条
  • [41] Matching Properties in Total Domination Vertex Critical Graphs
    Haichao Wang
    Liying Kang
    Erfang Shan
    Graphs and Combinatorics, 2009, 25 : 851 - 861
  • [42] Vertex-edge domination dot critical graphs
    Meddah, Nacera
    Chellali, Mustapha
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024,
  • [43] On the Structure of Graphs Vertex Critical with Respect to Connected Domination
    Plummer, Michael D.
    RESEARCH TRENDS IN COMBINATORIAL OPTIMIZATION, 2009, : 303 - 315
  • [44] On the existence problem of the total domination vertex critical graphs
    Sohn, Moo Young
    Kim, Dongseok
    Kwon, Young Soo
    Lee, Jaeun
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (01) : 46 - 52
  • [45] Properties of total restrained domination vertex critical graphs
    Rad, Nader Jafari
    ARS COMBINATORIA, 2015, 122 : 275 - 287
  • [46] On total domination vertex critical graphs of high connectivity
    Henning, Michael A.
    Rad, Nader Jafari
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) : 1969 - 1973
  • [47] The diameter of paired-domination vertex critical graphs
    Michael A. Henning
    Christina M. Mynhardt
    Czechoslovak Mathematical Journal, 2008, 58 : 887 - 897
  • [48] Perfect matchings in paired domination vertex critical graphs
    Huang, Shenwei
    Shan, Erfang
    Kang, Liying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 23 (04) : 507 - 518
  • [49] Bounds on the order of connected domination vertex critical graphs
    Kaemawichanurat, P.
    Caccetta, L.
    Ananchuen, N.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2018, 107 : 73 - 96
  • [50] A refinement on the structure of vertex-critical (P5, gem)-free graphs
    Cameron, Ben
    Hoang, Chinh T.
    THEORETICAL COMPUTER SCIENCE, 2023, 961