On minimum cutsets in independent domination vertex-critical graphs

被引:0
|
作者
Ananchuen, Nawarat [1 ]
Ruangthampisan, Sriphan [2 ]
Ananchuen, Watcharaphong [3 ]
Caccetta, Louis [3 ]
机构
[1] Ctr Excellence Math, CHE, Si Ayutthaya Rd, Bangkok 10400, Thailand
[2] Silpakorn Univ, Fac Sci, Dept Math, Nakhon Pathom 73000, Thailand
[3] Curtin Univ, Dept Math & Stat, Western Australian Ctr Excellence Ind Optimisat, GPO Box U1987, Perth, WA 6845, Australia
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let gamma(i)(G) denote the independent domination number of G. A graph G is said to be k-gamma(i)-vertex-critical if gamma(i)(G) = k and for each x is an element of V (G), gamma(i)(G - x) < k. In this paper, we show that for any k-gamma(i)-vertex-critical graph H of order n with k >= 3, there exists an n-connected k-gamma(i)-vertexcritical graph G(H) containing H as an induced subgraph. Consequently, there are infinitely many non-isomorphic connected k-gamma(i)-vertex-critical graphs. We also establish a number of properties of connected 3-gamma(i)-vertex-critical graphs. In particular, we derive an upper bound on omega(G-S), the number of components of G-S when G is a connected 3-gamma(i)-vertex-critical graph and S is a minimum cutset of G with vertical bar S vertical bar >= 3.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 50 条
  • [21] A note on independent vertex edge domination in graphs
    Chen, Xue-gang
    Yin, Kai
    Gao, Ting
    DISCRETE OPTIMIZATION, 2017, 25 : 1 - 5
  • [22] Vertex-critical (P5, chair)-free graphs
    Huang, Shenwei
    Li, Zeyu
    DISCRETE APPLIED MATHEMATICS, 2023, 341 : 9 - 15
  • [23] Vertex-Critical (P5, chair)-Free Graphs
    Huang, Shenwei
    Li, Zeyu
    arXiv, 2023,
  • [24] Vertex cutsets of undirected graphs
    Patvardhan, C., 1600, IEEE, Piscataway, NJ, United States (44):
  • [25] Vertex-critical (P3 + ℓP1)-free and vertex-critical (gem, co-gem)-free graphs
    Abuadas, Tala
    Cameron, Ben
    Hoang, Chinh T.
    Sawada, Joe
    DISCRETE APPLIED MATHEMATICS, 2024, 344 : 179 - 187
  • [26] Vertex-critical graphs far from edge-criticality
    Martinsson, Anders
    Steiner, Raphael
    COMBINATORICS PROBABILITY AND COMPUTING, 2024,
  • [27] GRAPHS WHICH ARE VERTEX-CRITICAL WITH RESPECT TO THE EDGE-CHROMATIC CLASS
    HILTON, AJW
    JOHNSON, PD
    MATHEMATIKA, 1989, 36 (72) : 241 - 252
  • [28] On questions on (total) domination vertex critical graphs
    Mojdeh, Doost Ali
    Hasni, Roslan
    ARS COMBINATORIA, 2010, 96 : 405 - 419
  • [29] The diameter of total domination vertex critical graphs
    Goddard, W
    Haynes, TW
    Henning, MA
    van der Merwe, LC
    DISCRETE MATHEMATICS, 2004, 286 (03) : 255 - 261
  • [30] A note on the total domination vertex critical graphs
    Chen, Xue-gang
    Sohn, Moo Young
    ARS COMBINATORIA, 2008, 88 : 289 - 294