SELF-CONSISTENT GENERALIZED RANDOM-PHASE APPROXIMATION FOR SPIN SYSTEMS

被引:2
|
作者
BROWN, EB
机构
[1] Department of Physics, Manhattan College, Riverdale
来源
PHYSICAL REVIEW A | 1990年 / 42卷 / 12期
关键词
D O I
10.1103/PhysRevA.42.7107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A generalized random-phase approximation (RPA) for decoupling the double-time Green's functions (DTGF) equations of motion of spin systems is developed. The decoupling parameters are chosen by fixing the moments of both the commutator and anticommutator decoupled spectral functions, thus establishing a well-defined relationship between the approximation scheme and the fundamental properties of DTGF. It is shown that the standard RPA must be supplemented by a condition on correlations to provide a well-defined, complete approximation scheme. The procedure is demonstrated by application to the fully anisotropic S = 1/2 Heisenberg model in a field.
引用
收藏
页码:7107 / 7111
页数:5
相关论文
共 50 条
  • [1] Towards a self-consistent random-phase approximation for Fermi systems
    Catara, F
    Piccitto, G
    Sambataro, M
    VanGiai, N
    [J]. PHYSICAL REVIEW B, 1996, 54 (24): : 17536 - 17546
  • [2] Self-consistent random-phase approximation for hot finite Fermi systems
    Vdovin, AI
    Kosov, DS
    Nawrocka, W
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 111 (02) : 613 - 620
  • [3] Self-consistent random-phase approximation for hot finite Fermi systems
    A. I. Vdovin
    D. S. Kosov
    W. Nawrocka
    [J]. Theoretical and Mathematical Physics, 1997, 111 : 613 - 620
  • [4] Self-consistent relativistic random-phase approximation with vacuum polarization
    Haga, A
    Toki, H
    Tamenaga, S
    Horikawa, Y
    Yadav, HL
    [J]. PHYSICAL REVIEW C, 2005, 72 (03):
  • [5] Self-consistent quasiparticle random-phase approximation for a multilevel pairing model
    Hung, N. Quang
    Dang, N. Dinh
    [J]. PHYSICAL REVIEW C, 2007, 76 (05):
  • [6] Tensor effective interaction in self-consistent random-phase approximation calculations
    Anguiano, M.
    Co', G.
    De Donno, V.
    Lallena, A. M.
    [J]. PHYSICAL REVIEW C, 2011, 83 (06):
  • [7] SELF-CONSISTENT RANDOM-PHASE APPROXIMATION FOR 3-BODY FORCES
    WEIGEL, MK
    WINTER, J
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1978, 4 (09) : 1427 - 1440
  • [8] Particle-number conservation within self-consistent random-phase approximation
    Dang, ND
    [J]. PHYSICAL REVIEW C, 2005, 71 (02):
  • [9] Restoration of the Ikeda sum rule in self-consistent quasiparticle random-phase approximation
    Delion, DS
    Dukelsky, J
    Schuck, P
    [J]. PHYSICAL REVIEW C, 1997, 55 (05) : 2340 - 2344
  • [10] Particle-hole excitations within a self-consistent random-phase approximation
    Gambacurta, D.
    Catara, F.
    [J]. PHYSICAL REVIEW B, 2008, 77 (20):