Self-consistent random-phase approximation for hot finite Fermi systems

被引:0
|
作者
A. I. Vdovin
D. S. Kosov
W. Nawrocka
机构
[1] Joint Institute for Nuclear Research,N. N. Bogoliubov Laboratory for Theoretical Physics
[2] Wroclaw University,Institute for Theoretical Physics
来源
关键词
Collective Motion; Collective Excitation; Pauli Principle; Thermal Vacuum; Boson Operator;
D O I
暂无
中图分类号
学科分类号
摘要
To study collective excitations in hot finite Fermi systems (atomic nuclei, metallic clusters), a method accounting for the influence of temperature and the collective excitation parameters of the system on the mean field is developed using the formalism of thermofield dynamics. The role of the Pauli principle is considered more correctly than in the standard thermal random-phase approximation.
引用
收藏
页码:613 / 620
页数:7
相关论文
共 50 条
  • [1] Self-consistent random-phase approximation for hot finite Fermi systems
    Vdovin, AI
    Kosov, DS
    Nawrocka, W
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 111 (02) : 613 - 620
  • [2] Towards a self-consistent random-phase approximation for Fermi systems
    Catara, F
    Piccitto, G
    Sambataro, M
    VanGiai, N
    [J]. PHYSICAL REVIEW B, 1996, 54 (24): : 17536 - 17546
  • [3] SELF-CONSISTENT GENERALIZED RANDOM-PHASE APPROXIMATION FOR SPIN SYSTEMS
    BROWN, EB
    [J]. PHYSICAL REVIEW A, 1990, 42 (12): : 7107 - 7111
  • [4] Self-consistent random-phase approximation at finite temperature within the Richardson model
    Dang, Nguyen Dinh
    Tanabe, Kosai
    [J]. PHYSICAL REVIEW C, 2006, 74 (03):
  • [5] Pairing within the self-consistent quasiparticle random-phase approximation at finite temperature
    Dang, N. Dinh
    Hung, N. Quang
    [J]. PHYSICAL REVIEW C, 2008, 77 (06):
  • [6] Thermodynamic properties of hot nuclei within the self-consistent quasiparticle random-phase approximation
    Hung, N. Quang
    Dang, N. Dinh
    [J]. PHYSICAL REVIEW C, 2010, 82 (04):
  • [7] Isospin corrections for superallowed Fermi β decay in self-consistent relativistic random-phase approximation approaches
    Liang, Haozhao
    Van Giai, Nguyen
    Meng, Jie
    [J]. PHYSICAL REVIEW C, 2009, 79 (06):
  • [8] Self-consistent relativistic random-phase approximation with vacuum polarization
    Haga, A
    Toki, H
    Tamenaga, S
    Horikawa, Y
    Yadav, HL
    [J]. PHYSICAL REVIEW C, 2005, 72 (03):
  • [9] Self-consistent continuum random-phase approximation calculations with finite-range interactions
    De Donno, V.
    Co, G.
    Anguiano, M.
    Lallena, A. M.
    [J]. PHYSICAL REVIEW C, 2011, 83 (04):
  • [10] Self-consistent quasiparticle random phase approximation for the description of superfluid Fermi systems
    Rabhi, A
    Bennaceur, R
    Chanfray, G
    Schuck, P
    [J]. PHYSICAL REVIEW C, 2002, 66 (06): : 21