Self-consistent relativistic random-phase approximation with vacuum polarization

被引:5
|
作者
Haga, A [1 ]
Toki, H
Tamenaga, S
Horikawa, Y
Yadav, HL
机构
[1] Osaka Univ, Res Ctr Nucl Phys, Ibaraki, Osaka 5670047, Japan
[2] Nagoya Inst Technol, Dept Engn Phys Elect & Mech, Nagoya, Aichi 4668555, Japan
[3] Juntendo Univ, Dept Phys, Chiba 2701695, Japan
[4] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India
来源
PHYSICAL REVIEW C | 2005年 / 72卷 / 03期
关键词
D O I
10.1103/PhysRevC.72.034301
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a theoretical formulation for the description of nuclear excitations within the framework of a relativistic random-phase approximation whereby the vacuum polarization arising from nucleon-antinucleon fields is duly accounted for. The vacuum contribution to the Lagrangian is explicitly described as extra new terms of interacting mesons by means of the derivative expansion of the effective action. It is shown that the self-consistent calculation yields zero eigenvalue for the spurious isoscalar-dipole state and also conserves the vector-current density.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Towards a self-consistent random-phase approximation for Fermi systems
    Catara, F
    Piccitto, G
    Sambataro, M
    VanGiai, N
    [J]. PHYSICAL REVIEW B, 1996, 54 (24): : 17536 - 17546
  • [2] SELF-CONSISTENT GENERALIZED RANDOM-PHASE APPROXIMATION FOR SPIN SYSTEMS
    BROWN, EB
    [J]. PHYSICAL REVIEW A, 1990, 42 (12): : 7107 - 7111
  • [3] Isospin corrections for superallowed Fermi β decay in self-consistent relativistic random-phase approximation approaches
    Liang, Haozhao
    Van Giai, Nguyen
    Meng, Jie
    [J]. PHYSICAL REVIEW C, 2009, 79 (06):
  • [4] Self-consistent random-phase approximation for hot finite Fermi systems
    Vdovin, AI
    Kosov, DS
    Nawrocka, W
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 111 (02) : 613 - 620
  • [5] Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations
    Niu, Z. M.
    Niu, Y. F.
    Liang, H. Z.
    Long, W. H.
    Meng, J.
    [J]. PHYSICAL REVIEW C, 2017, 95 (04)
  • [6] Self-consistent quasiparticle random-phase approximation for a multilevel pairing model
    Hung, N. Quang
    Dang, N. Dinh
    [J]. PHYSICAL REVIEW C, 2007, 76 (05):
  • [7] Self-consistent random-phase approximation for hot finite Fermi systems
    A. I. Vdovin
    D. S. Kosov
    W. Nawrocka
    [J]. Theoretical and Mathematical Physics, 1997, 111 : 613 - 620
  • [8] Tensor effective interaction in self-consistent random-phase approximation calculations
    Anguiano, M.
    Co', G.
    De Donno, V.
    Lallena, A. M.
    [J]. PHYSICAL REVIEW C, 2011, 83 (06):
  • [9] SELF-CONSISTENT RANDOM-PHASE APPROXIMATION FOR 3-BODY FORCES
    WEIGEL, MK
    WINTER, J
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1978, 4 (09) : 1427 - 1440
  • [10] Relativistic mean-field model and random-phase approximation with vacuum polarization
    Haga, Akihiro
    Toki, Hiroshi
    Tamenaga, Setsuo
    Horikawa, Yataro
    [J]. MODERN PHYSICS LETTERS A, 2006, 21 (31-33) : 2447 - 2454