SELF-CONSISTENT GENERALIZED RANDOM-PHASE APPROXIMATION FOR SPIN SYSTEMS

被引:2
|
作者
BROWN, EB
机构
[1] Department of Physics, Manhattan College, Riverdale
来源
PHYSICAL REVIEW A | 1990年 / 42卷 / 12期
关键词
D O I
10.1103/PhysRevA.42.7107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A generalized random-phase approximation (RPA) for decoupling the double-time Green's functions (DTGF) equations of motion of spin systems is developed. The decoupling parameters are chosen by fixing the moments of both the commutator and anticommutator decoupled spectral functions, thus establishing a well-defined relationship between the approximation scheme and the fundamental properties of DTGF. It is shown that the standard RPA must be supplemented by a condition on correlations to provide a well-defined, complete approximation scheme. The procedure is demonstrated by application to the fully anisotropic S = 1/2 Heisenberg model in a field.
引用
收藏
页码:7107 / 7111
页数:5
相关论文
共 50 条
  • [21] Isospin corrections for superallowed Fermi β decay in self-consistent relativistic random-phase approximation approaches
    Liang, Haozhao
    Van Giai, Nguyen
    Meng, Jie
    [J]. PHYSICAL REVIEW C, 2009, 79 (06):
  • [22] Self-consistent extension of random-phase approximation enlarged beyond particle-hole configurations
    Gambacurta, Danilo
    Catara, Francesco
    Grasso, Marcella
    [J]. PHYSICAL REVIEW C, 2009, 80 (01)
  • [23] Self-consistent random-phase approximation for a two-dimensional electron gas at finite temperatures
    Faleev, SV
    Stockman, MI
    [J]. PHYSICAL REVIEW B, 2001, 63 (19)
  • [24] Self-consistent continuum random-phase approximation calculations of 4He electromagnetic responses
    De Donno, V.
    Anguiano, M.
    Co, G.
    Lallena, A. M.
    [J]. PHYSICAL REVIEW C, 2011, 84 (03):
  • [25] GENERALIZED SELF-CONSISTENT-FIELD AND RANDOM-PHASE APPROXIMATIONS FOR MULTI-PHASE SYSTEMS
    MCCUMBER, DE
    [J]. NUCLEAR PHYSICS, 1961, 26 (02): : 286 - &
  • [26] The number self-consistent renormalized random phase approximation
    Mariano, A.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (30-31): : 5334 - 5337
  • [27] Limitations of the number self-consistent random phase approximation
    Mariano, A
    Hirsch, JG
    [J]. PHYSICAL REVIEW C, 2000, 61 (05): : 7
  • [28] The number self-consistent renormalized random phase approximation
    Mariano, A.
    [J]. RECENT PROGRESS IN MANY-BODY THEORIES, PROCEEDINGS, 2006, 10 : 380 - +
  • [29] Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations
    Niu, Z. M.
    Niu, Y. F.
    Liang, H. Z.
    Long, W. H.
    Meng, J.
    [J]. PHYSICAL REVIEW C, 2017, 95 (04)
  • [30] Self-consistent Skyrme quasiparticle random-phase approximation for use in axially symmetric nuclei of arbitrary mass
    Terasaki, J.
    Engel, J.
    [J]. PHYSICAL REVIEW C, 2010, 82 (03):