Restoration of the Ikeda sum rule in self-consistent quasiparticle random-phase approximation

被引:27
|
作者
Delion, DS
Dukelsky, J
Schuck, P
机构
[1] INST ESTRUCT MAT, E-28006 MADRID, SPAIN
[2] UNIV GRENOBLE 1, CNRS, IN2P3, INST NUCL SCI, F-38026 GRENOBLE, FRANCE
关键词
D O I
10.1103/PhysRevC.55.2340
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The so-called self-consistent quasiparticle random phase approximation, accounting for a better treatment of ground-state correlations, is applied to a schematic Hamiltonian, describing the Fermi beta decay process. The self-consistent procedure coupling the BCS minimum with the quantum fluctuations yields an exact fulfillment of the Ikeda sum rule. The role of the ground-state correlations is analyzed in the case of the double beta decay process.
引用
收藏
页码:2340 / 2344
页数:5
相关论文
共 50 条
  • [1] Fully renormalized quasiparticle random-phase approximation fulfills Ikeda sum rule exactly
    Rodin, V
    Faessler, A
    [J]. PHYSICAL REVIEW C, 2002, 66 (05): : 4
  • [2] Self-consistent quasiparticle random-phase approximation for a multilevel pairing model
    Hung, N. Quang
    Dang, N. Dinh
    [J]. PHYSICAL REVIEW C, 2007, 76 (05):
  • [3] Sum rule in a consistent relativistic random-phase approximation
    Ma, ZY
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (04) : 493 - 498
  • [4] Pairing within the self-consistent quasiparticle random-phase approximation at finite temperature
    Dang, N. Dinh
    Hung, N. Quang
    [J]. PHYSICAL REVIEW C, 2008, 77 (06):
  • [5] Thermodynamic properties of hot nuclei within the self-consistent quasiparticle random-phase approximation
    Hung, N. Quang
    Dang, N. Dinh
    [J]. PHYSICAL REVIEW C, 2010, 82 (04):
  • [6] Sum-rule analysis of the renormalized quasiparticle random-phase approximation
    Suhonen, J
    Toivanen, J
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (02) : 263 - 268
  • [7] Linear response of light deformed nuclei investigated by self-consistent quasiparticle random-phase approximation
    Losa, C.
    Pastore, A.
    Dossing, T.
    Vigezzi, E.
    Broglia, R. A.
    [J]. PHYSICAL REVIEW C, 2010, 81 (06):
  • [8] Self-consistent relativistic random-phase approximation with vacuum polarization
    Haga, A
    Toki, H
    Tamenaga, S
    Horikawa, Y
    Yadav, HL
    [J]. PHYSICAL REVIEW C, 2005, 72 (03):
  • [9] Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations
    Niu, Z. M.
    Niu, Y. F.
    Liang, H. Z.
    Long, W. H.
    Meng, J.
    [J]. PHYSICAL REVIEW C, 2017, 95 (04)
  • [10] Towards a self-consistent random-phase approximation for Fermi systems
    Catara, F
    Piccitto, G
    Sambataro, M
    VanGiai, N
    [J]. PHYSICAL REVIEW B, 1996, 54 (24): : 17536 - 17546