Bayesian Downscaling Methods for Aggregated Count Data

被引:0
|
作者
Michaud, Clayton P. [1 ]
Sproul, Thomas W. [1 ]
机构
[1] Univ Rhode Isl, Dept Environm & Nat Resource Econ, Kingston, RI 02881 USA
基金
美国食品与农业研究所;
关键词
aggregated data; agricultural census; Bayesian methods; count data; disaggregation; downscaling; farm counts; posterior distribution;
D O I
10.1017/age.2017.26
中图分类号
F3 [农业经济];
学科分类号
0202 ; 020205 ; 1203 ;
摘要
Policy-critical, micro-level statistical data are often unavailable at the desired level of disaggregation. We present a Bayesian methodology for downscaling aggregated count data to the micro level, using an outside statistical sample. Our procedure combines numerical simulation with exact calculation of combinatorial probabilities. We motivate our approach with an application estimating the number of farms in a region, using count totals at higher levels of aggregation. In a simulation analysis over varying population sizes, we demonstrate both robustness to sampling variability and outperformance relative to maximum likelihood. Spatial considerations, implementation of informative priors, non-spatial classification problems, and best practices are discussed.
引用
收藏
页码:178 / 194
页数:17
相关论文
共 50 条
  • [21] Bayesian Model Selection for Longitudinal Count Data
    Ariyo, Oludare
    Lesaffre, Emmanuel
    Verbeke, Geert
    Quintero, Adrian
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2022, 84 (02): : 516 - 547
  • [22] Bayesian semiparametric isotonic regression for count data
    Dunson, DB
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 618 - 627
  • [23] Bayesian Model Selection for Longitudinal Count Data
    Oludare Ariyo
    Emmanuel Lesaffre
    Geert Verbeke
    Adrian Quintero
    Sankhya B, 2022, 84 : 516 - 547
  • [24] Sparse Bayesian modelling of underreported count data
    Dvorzak, Michaela
    Wagner, Helga
    STATISTICAL MODELLING, 2016, 16 (01) : 24 - 46
  • [25] Bayesian Correlation Analysis for Sequence Count Data
    Sanchez-Taltavull, Daniel
    Ramachandran, Parameswaran
    Lau, Nelson
    Perkins, Theodore J.
    PLOS ONE, 2016, 11 (10):
  • [26] Optimal Bayesian Transfer Learning for Count Data
    Karbalayghareh, Alireza
    Qian, Xiaoning
    Dougherty, Edward R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (02) : 644 - 655
  • [27] Bayesian shrinkage estimation for stratified count data
    Hamura, Yasuyuki
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (01) : 431 - 453
  • [28] Bayesian quantile regression for longitudinal count data
    Jantre, Sanket
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 103 - 127
  • [29] Bayesian Forecasting for Time Series of Count Data
    Nariswari, Rinda
    Pudjihastuti, Herena
    4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE (ICCSCI 2019) : ENABLING COLLABORATION TO ESCALATE IMPACT OF RESEARCH RESULTS FOR SOCIETY, 2019, 157 : 427 - 435
  • [30] Spatial variogram estimation from temporally aggregated seabird count data
    Perez-Lapena, B.
    Wijnberg, K. M.
    Stein, A.
    Hulscher, S. J. M. H.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2013, 20 (03) : 353 - 375