Bayesian Downscaling Methods for Aggregated Count Data

被引:0
|
作者
Michaud, Clayton P. [1 ]
Sproul, Thomas W. [1 ]
机构
[1] Univ Rhode Isl, Dept Environm & Nat Resource Econ, Kingston, RI 02881 USA
基金
美国食品与农业研究所;
关键词
aggregated data; agricultural census; Bayesian methods; count data; disaggregation; downscaling; farm counts; posterior distribution;
D O I
10.1017/age.2017.26
中图分类号
F3 [农业经济];
学科分类号
0202 ; 020205 ; 1203 ;
摘要
Policy-critical, micro-level statistical data are often unavailable at the desired level of disaggregation. We present a Bayesian methodology for downscaling aggregated count data to the micro level, using an outside statistical sample. Our procedure combines numerical simulation with exact calculation of combinatorial probabilities. We motivate our approach with an application estimating the number of farms in a region, using count totals at higher levels of aggregation. In a simulation analysis over varying population sizes, we demonstrate both robustness to sampling variability and outperformance relative to maximum likelihood. Spatial considerations, implementation of informative priors, non-spatial classification problems, and best practices are discussed.
引用
收藏
页码:178 / 194
页数:17
相关论文
共 50 条
  • [41] A Bayesian Approach to Account for Misclassification and Overdispersion in Count Data
    Wu, Wenqi
    Stamey, James
    Kahle, David
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2015, 12 (09): : 10648 - 10661
  • [42] Bayesian Count Data Modeling for Finding Technological Sustainability
    Jun, Sunghae
    SUSTAINABILITY, 2018, 10 (09)
  • [43] Bayesian Correction for Misclassification in Multilevel Count Data Models
    Nelson, Tyler
    Song, Joon Jin
    Chin, Yoo-Mi
    Stamey, James D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2018, 2018
  • [44] A Bayesian nonparametric approach to correct for underreporting in count data
    Arima, Serena
    Polettini, Silvia
    Pasculli, Giuseppe
    Gesualdo, Loreto
    Pesce, Francesco
    Procaccini, Deni-Aldo
    BIOSTATISTICS, 2023, 25 (03) : 904 - 918
  • [45] Bayesian variable selection for time series count data
    Ibrahim, JG
    Chen, MH
    Ryan, LM
    STATISTICA SINICA, 2000, 10 (03) : 971 - 987
  • [46] Bayesian Methods for Data Analysis
    Weiss, Robert E.
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2010, 149 (02) : 187 - 188
  • [47] Bayesian spatial modelling of gamma ray count data
    Leonte, D
    Nott, DJ
    MATHEMATICAL GEOLOGY, 2006, 38 (02): : 135 - 154
  • [48] Bayesian quantile regression model for claim count data
    Fuzi, Mohd Fadzli Mohd
    Jemain, Abdul Aziz
    Ismail, Noriszura
    INSURANCE MATHEMATICS & ECONOMICS, 2016, 66 : 124 - 137
  • [49] BAYESIAN METHODS FOR BINOMIAL DATA
    LEONARD, T
    BIOMETRIKA, 1972, 59 (03) : 581 - 589
  • [50] A Bayesian approach to analyse overdispersed longitudinal count data
    Rizzato, Fernanda B.
    Leandro, Roseli A.
    Demetrio, Clarice G. B.
    Molenberghs, Geert
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (11) : 2085 - 2109