Sparse Bayesian modelling of underreported count data

被引:18
|
作者
Dvorzak, Michaela [1 ]
Wagner, Helga [2 ]
机构
[1] Joanneum Res, Leonhardstr 59, A-8010 Graz, Austria
[2] Johannes Kepler Univ Linz, Dept Appl Stat, A-4040 Linz, Austria
关键词
MCMC; parameter identification; Poisson regression; underreporting; variable selection; VARIABLE SELECTION; DIAGNOSTIC MISCLASSIFICATION; POISSON REGRESSION; INFERENCE;
D O I
10.1177/1471082X15588398
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bayesian inference for regression models of count data subject to underreporting. For the data generating process of counts as well as the fallible reporting process a joint model is specified, where the outcomes in both processes are related to a set of potential covariates. Identification of the joint model is achieved by additional information provided through validation data and incorporation of variable selection. For posterior inference we propose a convenient Markov chain Monte Carlo (MCMC) sampling scheme which relies on data augmentation and auxiliary mixture sampling techniques for this two-part model. Performance of the method is illustrated for simulated data and applied to analyse real data, collected to estimate risk of cervical cancer death.
引用
收藏
页码:24 / 46
页数:23
相关论文
共 50 条
  • [1] BAYESIAN HIERARCHICAL MODELLING OF SPARSE COUNT PROCESSES IN RETAIL ANALYTICS
    Pitkin, James
    Manolopoulou, Ioanna
    Ross, Gordon
    [J]. ANNALS OF APPLIED STATISTICS, 2024, 18 (02): : 946 - 965
  • [2] Bayesian inference on quasi-sparse count data
    Datta, Jyotishka
    Dunson, David B.
    [J]. BIOMETRIKA, 2016, 103 (04) : 971 - 983
  • [3] Bayesian Spatial Modelling of Gamma Ray Count Data
    Daniela Leonte
    David J. Nott
    [J]. Mathematical Geology, 2006, 38 : 135 - 154
  • [4] Bayesian spatial modelling of gamma ray count data
    Leonte, D
    Nott, DJ
    [J]. MATHEMATICAL GEOLOGY, 2006, 38 (02): : 135 - 154
  • [5] BAYESIAN MODELING OF INTERACTION BETWEEN FEATURES IN SPARSE MULTIVARIATE COUNT DATA WITH APPLICATION TO MICROBIOME STUDY
    Zhang, Shuangjie
    Shen, Yuning
    Chen, Irene A.
    Lee, Juhee
    [J]. ANNALS OF APPLIED STATISTICS, 2023, 17 (03): : 1861 - 1883
  • [6] Quantifying Registration Uncertainty With Sparse Bayesian Modelling
    Le Folgoc, Loic
    Delingette, Herve
    Criminisi, Antonio
    Ayache, Nicholas
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (02) : 607 - 617
  • [7] Bayesian Underreported in Disease Mapping
    Padmadisastra, S.
    Suprijadi, J.
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660
  • [8] Bayesian modelling of time series data (BayModTS)-a FAIR workflow to process sparse and highly variable data
    Hoepfl, Sebastian
    Albadry, Mohamed
    Dahmen, Uta
    Herrmann, Karl-Heinz
    Kindler, Eva Marie
    Koenig, Matthias
    Reichenbach, Juergen Rainer
    Tautenhahn, Hans-Michael
    Wei, Weiwei
    Zhao, Wan-Ting
    Radde, Nicole Erika
    [J]. BIOINFORMATICS, 2024, 40 (05)
  • [9] Bayesian Geostatistical Modelling for Precipitation Data with Nested Anisotropy Measured at Sparse Reference Stations
    Gao, Xin
    Yuan, Shengyuan
    Li, Jingzhong
    Zhao, Huibing
    Xu, Shuna
    [J]. Journal of Geo-Information Science, 2022, 24 (08) : 1445 - 1458
  • [10] Bayesian sample size determination for estimating a Poisson rate with underreported data
    Stamey, JD
    Seaman, JW
    Young, DM
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2004, 33 (02) : 341 - 354