Tight Frame Completions with Prescribed Norms

被引:0
|
作者
P. G. Massey
M. A. Ruiz
机构
[1] Univ. Nac. de La Plata and IAM-CONICET,Dpto. de Matemática
来源
Sampling Theory in Signal and Image Processing | 2008年 / 7卷 / 1期
关键词
frame; tight frame completion; majorization; 42C15;
D O I
10.1007/BF03549482
中图分类号
学科分类号
摘要
Let H be a finite dimensional (real or complex) Hilbert space and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {{a_i}} \right\}_{i = 1}^\infty $$\end{document} be a non-increasing sequence of positive numbers. Given a finite sequence of vectors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F = \left\{ {{f_i}} \right\}_{i = 1}^p$$\end{document} in H we find necessary and sufficient conditions for the existence of r ∈ ℕ ∪ {∞} and a Bessel sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \left\{ {{g_i}} \right\}_{i = 1}^r$$\end{document} in H such that F ∪ G is a tight frame for H and ‖gi‖2 = ai for every i. Moreover, in this case we compute the minimum r ∈ ℕ ∪ {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames.
引用
收藏
页码:2 / 13
页数:11
相关论文
共 50 条
  • [31] VERB FRAME PREFERENCES - DESCRIPTIVE NORMS
    CONNINE, C
    FERREIRA, F
    JONES, C
    CLIFTON, C
    FRAZIER, L
    JOURNAL OF PSYCHOLINGUISTIC RESEARCH, 1984, 13 (04) : 307 - 319
  • [32] TIGHT FRAME LEARNING FOR CARDIOVASCULAR MRI
    Wang, Qiu
    Liu, Jun
    Janardhanan, Nirmal
    Zenge, Michael
    Mueller, Edgar
    Nadar, Mariappan S.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 290 - 293
  • [33] The Closure of the Set of Tight Frame Wavelets
    Bownik, Marcin
    ACTA APPLICANDAE MATHEMATICAE, 2009, 107 (1-3) : 195 - 201
  • [34] DOOR FRAME EXERCISES FOR TIGHT SHOULDERS
    DOWNER, AH
    PHYSICAL THERAPY, 1974, 54 (03): : 252 - 253
  • [35] The Closure of the Set of Tight Frame Wavelets
    Marcin Bownik
    Acta Applicandae Mathematicae, 2009, 107 : 195 - 201
  • [36] On Normalized Tight Frame Wavelet Sets
    Srivastava, Swati
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (01): : 127 - 135
  • [37] Image denoising using a tight frame
    Shen, LX
    Papadakis, M
    Kakadiaris, IA
    Konstantinidis, I
    Kouri, D
    Hoffman, D
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (05) : 1254 - 1263
  • [38] Tight frame various lengths filters
    Abdelnour, AF
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IV, PROCEEDINGS: IMAGE, ACOUSTIC, SPEECH AND SIGNAL PROCESSING, 2003, : 22 - 26
  • [39] Tight Frame Normal Map Compression
    Munkberg, Jacob
    Olsson, Ola
    Stroem, Jacob
    Akenine-Moller, Tomas
    GRAPHICS HARDWARE 2007: ACM SIGGRAPH / EUROGRAPHICS SYMPOSIUM PROCEEDINGS, 2007, : 37 - +
  • [40] Surface denoising using a tight frame
    Kakadiaris, IA
    Shen, L
    Papadakis, M
    Konstantinidis, I
    Kouri, D
    Hoffman, D
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 2004, : 553 - 560