The Closure of the Set of Tight Frame Wavelets

被引:1
|
作者
Marcin Bownik
机构
[1] University of Oregon,Department of Mathematics
来源
关键词
Tight frame wavelet; Framelet; Expansive dilation; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
We study properties of the closure of the set of tight frame wavelets. We give a necessary condition and a sufficient condition for a function to be in this closure. In particular, we show that the collection of tight frame wavelets is not dense in L2(ℝn), which answers a question posed by D. Han and D. Larson (Preprint, 2008).
引用
收藏
页码:195 / 201
页数:6
相关论文
共 50 条
  • [1] The Closure of the Set of Tight Frame Wavelets
    Bownik, Marcin
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2009, 107 (1-3) : 195 - 201
  • [2] Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties
    Paluszynski, M
    Sikic, H
    Weiss, GD
    Xiao, SL
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) : 297 - 327
  • [3] Tight Frame Wavelets, their Dimension Functions, MRA Tight Frame Wavelets and Connectivity Properties
    Maciej Paluszyński
    Hrvoje Šikić
    Guido Weiss
    Shaoliang Xiao
    [J]. Advances in Computational Mathematics, 2003, 18 : 297 - 327
  • [4] Density of Frame Wavelets and Tight Frame Wavelets in Local Fields
    Biswaranjan Behera
    [J]. Complex Analysis and Operator Theory, 2021, 15
  • [5] Density of Frame Wavelets and Tight Frame Wavelets in Local Fields
    Behera, Biswaranjan
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (06)
  • [6] Fast deep learning with tight frame wavelets
    Cao, Haitao
    [J]. NEURAL COMPUTING & APPLICATIONS, 2024, 36 (09): : 4885 - 4905
  • [7] Fast deep learning with tight frame wavelets
    Haitao Cao
    [J]. Neural Computing and Applications, 2024, 36 : 4885 - 4905
  • [8] Subspaces with normalized tight frame wavelets in R
    Dai, XD
    Diao, YN
    Gu, Q
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (06) : 1661 - 1667
  • [9] Frame wavelets with frame set support in the frequency domain
    Dat, XD
    Diao, YN
    Gu, Q
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (02) : 539 - 558
  • [10] Optimal Isotropic Wavelets for Localized Tight Frame Representations
    Ward, John Paul
    Pad, Pedram
    Unser, Michael
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 1918 - 1921