Image denoising using a tight frame

被引:53
|
作者
Shen, LX [1 ]
Papadakis, M
Kakadiaris, IA
Konstantinidis, I
Kouri, D
Hoffman, D
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Houston, Dept Comp Sci, Computat Biomed Lab, Houston, TX 77204 USA
[4] Univ Maryland, Dept Math, Norbert Wiener Ctr Harmon Anal & Applicat, College Pk, MD 20742 USA
[5] Univ Houston, Dept Chem, Houston, TX 77204 USA
[6] Univ Houston, Dept Phys, Houston, TX 77204 USA
[7] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[8] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
image denoising; tight frame; wavelets;
D O I
10.1109/TIP.2005.864240
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a general mathematical theory for lifting frames that allows us to modify existing filters to construct new ones that form Parseval frames. We apply our theory to design nonseparable Parseval frames from separable (tensor) products of a piecewise linear spline tight frame. These new frame systems incorporate the weighted average operator, the Sobel operator, and the Laplacian operator in directions that are integer multiples of 45 degrees. A new image denoising algorithm is then proposed, tailored to the specific properties of these new frame filters. We demonstrate the performance of our algorithm on a diverse set of images with very encouraging results.
引用
收藏
页码:1254 / 1263
页数:10
相关论文
共 50 条
  • [1] Image denoising using a tight frame
    Shen, L
    Papadakis, M
    Kakadiaris, IA
    Konstantinidis, I
    Kouri, D
    Hoffman, D
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 641 - 644
  • [2] Surface denoising using a tight frame
    Kakadiaris, IA
    Shen, L
    Papadakis, M
    Konstantinidis, I
    Kouri, D
    Hoffman, D
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 2004, : 553 - 560
  • [3] Data-driven tight frame construction and image denoising
    Cai, Jian-Feng
    Ji, Hui
    Shen, Zuowei
    Ye, Gui-Bo
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (01) : 89 - 105
  • [4] Image Denoising using Tight-Frame Dual-Tree Complex Wavelet Transform
    Gajbhar, Shrishail S.
    Joshi, Manjunath, V
    MACHINE INTELLIGENCE AND SIGNAL ANALYSIS, 2019, 748 : 645 - 656
  • [5] Convex Denoising using Non-Convex Tight Frame Regularization
    Parekh, Ankit
    Selesnick, Ivan W.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) : 1786 - 1790
  • [6] Image denoising using the ridgelet bi-frame
    Tan, Shan
    Jiao, Licheng
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (10) : 2449 - 2461
  • [7] DATA-DRIVEN TIGHT FRAME FOR CRYO-EM IMAGE DENOISING AND CONFORMATIONAL CLASSIFICATION
    Xian, Yin
    Gu, Hanlin
    Wang, Wei
    Huang, Xuhui
    Yao, Yuan
    Wang, Yang
    Cai, Jian-Feng
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 544 - 548
  • [8] Denoising an Image by Denoising Its Components in a Moving Frame
    Ghimpeteanu, Gabriela
    Batard, Thomas
    Bertalmio, Marcelo
    Levine, Stacey
    IMAGE AND SIGNAL PROCESSING, ICISP 2014, 2014, 8509 : 375 - 383
  • [9] Fractional-Order Variational Image Fusion and Denoising Based on Data-Driven Tight Frame
    Zhao, Ru
    Liu, Jingjing
    MATHEMATICS, 2023, 11 (10)
  • [10] Frame-based image denoising using hidden Markov model
    Yang, Xiaoyuan
    Zhang, Xudong
    Zhu, Zhipin
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (03) : 419 - 432