Image denoising using a tight frame

被引:53
|
作者
Shen, LX [1 ]
Papadakis, M
Kakadiaris, IA
Konstantinidis, I
Kouri, D
Hoffman, D
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Houston, Dept Comp Sci, Computat Biomed Lab, Houston, TX 77204 USA
[4] Univ Maryland, Dept Math, Norbert Wiener Ctr Harmon Anal & Applicat, College Pk, MD 20742 USA
[5] Univ Houston, Dept Chem, Houston, TX 77204 USA
[6] Univ Houston, Dept Phys, Houston, TX 77204 USA
[7] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[8] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
image denoising; tight frame; wavelets;
D O I
10.1109/TIP.2005.864240
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a general mathematical theory for lifting frames that allows us to modify existing filters to construct new ones that form Parseval frames. We apply our theory to design nonseparable Parseval frames from separable (tensor) products of a piecewise linear spline tight frame. These new frame systems incorporate the weighted average operator, the Sobel operator, and the Laplacian operator in directions that are integer multiples of 45 degrees. A new image denoising algorithm is then proposed, tailored to the specific properties of these new frame filters. We demonstrate the performance of our algorithm on a diverse set of images with very encouraging results.
引用
收藏
页码:1254 / 1263
页数:10
相关论文
共 50 条
  • [31] Medical image denoising using convolutional denoising autoencoders
    Gondara, Lovedeep
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 241 - 246
  • [32] Image Denoising Based on Adaptive and Multi-frame Averaging Filtering
    Xie Qinlan
    Chen Hong
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL III, PROCEEDINGS, 2009, : 523 - +
  • [33] Seismic data denoising based on data-driven tight frame dictionary learning method
    ZHENG Jialiang
    WANG Deli
    ZHANG Liang
    Global Geology, 2020, 23 (04) : 241 - 246
  • [34] Denoising and reconstruction of 3D seismic data on a data-driven tight frame
    Chen J.
    Niu C.
    Li Y.
    Huang R.
    Chen L.
    Ma Z.
    1600, Science Press (55): : 725 - 732
  • [35] PET image denoising using consistent denoising diffusion model
    Cui, Jianan
    Xie, Yutong
    Guo, Ning
    Feng, Yuanjiing
    Li, Quanzheng
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [36] Dynamic PET Image Denoising Using Deep Image Prior Combined With Regularization by Denoising
    Sun, Hao
    Peng, Lihong
    Zhang, Hongyan
    He, Yuru
    Cao, Shuangliang
    Lu, Lijun
    IEEE ACCESS, 2021, 9 : 52378 - 52392
  • [37] Undersampled MR Image Reconstruction with Data-Driven Tight Frame
    Liu, Jianbo
    Wang, Shanshan
    Peng, Xi
    Liang, Dong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [38] Tight frame: an efficient way for high-resolution image reconstruction
    Chan, RH
    Riemenschneider, SD
    Shen, LX
    Shen, ZW
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (01) : 91 - 115
  • [39] Variational bimodal image fusion with data-driven tight frame
    Zhang, Ying
    Zhang, Xiaoqun
    INFORMATION FUSION, 2020, 55 (55) : 164 - 172
  • [40] Non-convex nonlocal adaptive tight frame image deblurring
    Shen, Zhengwei
    IET IMAGE PROCESSING, 2022, 16 (07) : 1908 - 1923