Image denoising using a tight frame

被引:53
|
作者
Shen, LX [1 ]
Papadakis, M
Kakadiaris, IA
Konstantinidis, I
Kouri, D
Hoffman, D
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Houston, Dept Comp Sci, Computat Biomed Lab, Houston, TX 77204 USA
[4] Univ Maryland, Dept Math, Norbert Wiener Ctr Harmon Anal & Applicat, College Pk, MD 20742 USA
[5] Univ Houston, Dept Chem, Houston, TX 77204 USA
[6] Univ Houston, Dept Phys, Houston, TX 77204 USA
[7] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[8] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
image denoising; tight frame; wavelets;
D O I
10.1109/TIP.2005.864240
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a general mathematical theory for lifting frames that allows us to modify existing filters to construct new ones that form Parseval frames. We apply our theory to design nonseparable Parseval frames from separable (tensor) products of a piecewise linear spline tight frame. These new frame systems incorporate the weighted average operator, the Sobel operator, and the Laplacian operator in directions that are integer multiples of 45 degrees. A new image denoising algorithm is then proposed, tailored to the specific properties of these new frame filters. We demonstrate the performance of our algorithm on a diverse set of images with very encouraging results.
引用
收藏
页码:1254 / 1263
页数:10
相关论文
共 50 条
  • [41] Image Denoising using Contourlet Transform
    Sivakumar, R.
    Balaji, G.
    Ravikiran, R. S. J.
    Karikalan, R.
    Janaki, S. Saraswathi
    SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING, VOL 1, PROCEEDINGS, 2009, : 22 - 25
  • [42] An Image Denoising Application Using Shearlets
    Sevindir, Hulya Kodal
    Yazici, Cuneyt
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2478 - 2481
  • [43] Image Denoising Using Orthogonal Spline
    Zhou, Kaiting
    Zheng, Lixin
    Lin, Fuyong
    2012 INTERNATIONAL CONFERENCE ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING (ICMPBE2012), 2012, 33 : 798 - 803
  • [44] Image denoising using a combined criterion
    Semenishchev, Evgeny
    Marchuk, Vladimir
    Shrafel, Igor
    Dubovskov, Vadim
    Onoyko, Tatyana
    Maslennikov, Stansilav
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2016, 2016, 9869
  • [45] Image denoising using cloud images
    HuanjingYue
    Sun, Xiaoyan
    JingyuYang
    FengWu
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXVI, 2013, 8856
  • [46] Image Denoising Using Orthogonal Spline
    Zhou, Kaiting
    Zheng, Lixin
    Lin, Fuyong
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL IV, 2010, : 90 - 93
  • [47] Image Denoising Using Weighted Averaging
    Zhou Dengwen
    Shen Xiaoliu
    2009 WRI INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND MOBILE COMPUTING: CMC 2009, VOL I, 2009, : 400 - 403
  • [48] Image Denoising using Ridgelet Shrinkage
    Kumar, Pawan
    Bhurchandi, K. M.
    SIXTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2014), 2015, 9443
  • [49] Local Image Denoising Using RAISR
    Zin, Theingi
    Seta, Shogo
    Nakahara, Yusuke
    Yamaguchi, Takuro
    Ikehara, Masaaki
    IEEE ACCESS, 2022, 10 : 22420 - 22428
  • [50] Image Denoising Using Sparse Representations
    Valiollahzadeh, SeyyedMajid
    Firouzi, Hamed
    Babaie-Zadeh, Massoud
    Jutten, Christian
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 557 - +