DATA-DRIVEN TIGHT FRAME FOR CRYO-EM IMAGE DENOISING AND CONFORMATIONAL CLASSIFICATION

被引:0
|
作者
Xian, Yin [1 ,3 ]
Gu, Hanlin [1 ]
Wang, Wei [2 ]
Huang, Xuhui [2 ]
Yao, Yuan [1 ]
Wang, Yang [1 ]
Cai, Jian-Feng [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong, Peoples R China
[3] Beijing Computat Sci Res Ctr, Dept Appl Math, Beijing, Peoples R China
关键词
Cryo-EM images; image denoising; conformational classification; data-driven tight frame; SPARSE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The cryo-electron microscope (cryo-EM) is increasingly popular these years. It helps to uncover the biological structures and functions of macromolecules. In this paper, we address image denoising problem in cryo-EM. Denoising the cryo-EM images can help to distinguish different molecular conformations and improve three dimensional reconstruction resolution. We introduce the use of data-driven tight frame (DDTF) algorithm for cryo-EM image denoising. The DDTF algorithm is closely related to the dictionary learning. The advantage of DDTF algorithm is that it is computationally efficient, and can well identify the texture and shape of images without using large data samples. Experimental results on cryo-EM image denoising and conformational classification demonstrate the power of DDTF algorithm for cryo-EM image denoising and classification.
引用
收藏
页码:544 / 548
页数:5
相关论文
共 50 条
  • [1] Data-driven tight frame construction and image denoising
    Cai, Jian-Feng
    Ji, Hui
    Shen, Zuowei
    Ye, Gui-Bo
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (01) : 89 - 105
  • [2] Fractional-Order Variational Image Fusion and Denoising Based on Data-Driven Tight Frame
    Zhao, Ru
    Liu, Jingjing
    [J]. MATHEMATICS, 2023, 11 (10)
  • [3] GPR denoising via shearlet transformation and a data-driven tight frame
    Zhang, Liang
    Tang, Jingtian
    Li, Yaqi
    Liu, Zhengguang
    Chen, Wenjie
    Li, Guang
    [J]. NEAR SURFACE GEOPHYSICS, 2022, 20 (04) : 398 - 418
  • [4] Data-driven regularization lowers the size barrier of cryo-EM structure determination
    Kimanius, Dari
    Jamali, Kiarash
    Wilkinson, Max E.
    Lovestam, Sofia
    Velazhahan, Vaithish
    Nakane, Takanori
    Scheres, Sjors H. W.
    [J]. NATURE METHODS, 2024, 21 (07) : 1216 - 1221
  • [5] Undersampled MR Image Reconstruction with Data-Driven Tight Frame
    Liu, Jianbo
    Wang, Shanshan
    Peng, Xi
    Liang, Dong
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [6] SAR Image Despeckling Using Data-Driven Tight Frame
    Feng, WenSen
    Lei, Hong
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (09) : 1455 - 1459
  • [7] Variational bimodal image fusion with data-driven tight frame
    Zhang, Ying
    Zhang, Xiaoqun
    [J]. INFORMATION FUSION, 2020, 55 (55) : 164 - 172
  • [8] Seismic data denoising based on data-driven tight frame dictionary learning method
    ZHENG Jialiang
    WANG Deli
    ZHANG Liang
    [J]. Global Geology, 2020, 23 (04) : 241 - 246
  • [9] Denoising and reconstruction of 3D seismic data on a data-driven tight frame
    基于数据驱动紧框架理论的三维地震数据去噪与重建
    [J]. 1600, Science Press (55): : 725 - 732
  • [10] Joint Model for Image Denoising and Detection of Proteins Imaged by Cryo-EM
    Huang, Qinwen
    Zhou, Ye
    Bartesaghi, Alberto
    [J]. 2021 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2021,