Tight Frame Completions with Prescribed Norms

被引:0
|
作者
P. G. Massey
M. A. Ruiz
机构
[1] Univ. Nac. de La Plata and IAM-CONICET,Dpto. de Matemática
来源
Sampling Theory in Signal and Image Processing | 2008年 / 7卷 / 1期
关键词
frame; tight frame completion; majorization; 42C15;
D O I
10.1007/BF03549482
中图分类号
学科分类号
摘要
Let H be a finite dimensional (real or complex) Hilbert space and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {{a_i}} \right\}_{i = 1}^\infty $$\end{document} be a non-increasing sequence of positive numbers. Given a finite sequence of vectors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F = \left\{ {{f_i}} \right\}_{i = 1}^p$$\end{document} in H we find necessary and sufficient conditions for the existence of r ∈ ℕ ∪ {∞} and a Bessel sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \left\{ {{g_i}} \right\}_{i = 1}^r$$\end{document} in H such that F ∪ G is a tight frame for H and ‖gi‖2 = ai for every i. Moreover, in this case we compute the minimum r ∈ ℕ ∪ {∞} with this property. We also describe algorithms that perform completions of a given set of vectors to tight frames.
引用
收藏
页码:2 / 13
页数:11
相关论文
共 50 条
  • [41] EQUIANGULAR TIGHT FRAME FINGERPRINTING CODES
    Mixon, Dustin G.
    Quinn, Christopher
    Kiyavash, Negar
    Fickus, Matthew
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1856 - 1859
  • [42] Image denoising using a tight frame
    Shen, L
    Papadakis, M
    Kakadiaris, IA
    Konstantinidis, I
    Kouri, D
    Hoffman, D
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 641 - 644
  • [43] Strategic Behavior with Tight, Loose, and Polarized Norms
    Dimant, Eugen
    Gelfand, Michele
    Hochleitner, Anna
    Sonderegger, Silvia
    MANAGEMENT SCIENCE, 2024,
  • [44] Bounding the restricted isometry constants for a tight frame
    Kaporin, I. E.
    SBORNIK MATHEMATICS, 2017, 208 (11) : 1646 - 1660
  • [45] Fast deep learning with tight frame wavelets
    Cao, Haitao
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (09): : 4885 - 4905
  • [46] Orthonormal wavelet basis based on the tight frame
    Zhao, Ruizhen
    Song, Guoxiang
    Wang, Weiwei
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2000, 27 (01): : 49 - 51
  • [47] Tight frame approximations for Gabor and wavelet frames
    Han, DG
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IX, 2001, 4478 : 135 - 141
  • [48] Optimal Properties of the Canonical Tight Probabilistic Frame
    Cheng, Desai
    Okoudjou, Kasso A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (02) : 216 - 240
  • [49] Fast deep learning with tight frame wavelets
    Haitao Cao
    Neural Computing and Applications, 2024, 36 : 4885 - 4905
  • [50] On coarse quantization of tight Gabor frame expansions
    Yilmaz, Ö
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2005, 3 (02) : 283 - 299