SCANPY: large-scale single-cell gene expression data analysis

被引:0
|
作者
F. Alexander Wolf
Philipp Angerer
Fabian J. Theis
机构
[1] Institute of Computational Biology,Helmholtz Zentrum München – German Research Center for Environmental Health
[2] Technische Universität München,Department of Mathematics
来源
关键词
Single-cell transcriptomics; Machine learning; Scalability; Graph analysis; Clustering; Pseudotemporal ordering; Trajectory inference; Differential expression testing; Visualization; Bioinformatics;
D O I
暂无
中图分类号
学科分类号
摘要
Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).
引用
收藏
相关论文
共 50 条
  • [41] Generative pretraining from large-scale transcriptomes for single-cell deciphering
    Shen, Hongru
    Liu, Jilei
    Hu, Jiani
    Shen, Xilin
    Zhang, Chao
    Wu, Dan
    Feng, Mengyao
    Yang, Meng
    Li, Yang
    Yang, Yichen
    Wang, Wei
    Zhang, Qiang
    Yang, Jilong
    Chen, Kexin
    Li, Xiangchun
    ISCIENCE, 2023, 26 (05)
  • [42] NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
    Liang He
    Jose Davila-Velderrain
    Tomokazu S. Sumida
    David A. Hafler
    Manolis Kellis
    Alexander M. Kulminski
    Communications Biology, 4
  • [43] Automated Protocol for Large-Scale Modeling of Gene Expression Data
    Hall, Michelle Lynn
    Calkins, David
    Sherman, Woody
    Journal of Chemical Information and Modeling, 2016, 56 (11) : 2216 - 2224
  • [44] Identification of spatial expression trends in single-cell gene expression data
    Daniel Edsgärd
    Per Johnsson
    Rickard Sandberg
    Nature Methods, 2018, 15 : 339 - 342
  • [45] Identification of spatial expression trends in single-cell gene expression data
    Edsgard, Daniel
    Johnsson, Per
    Sandberg, Rickard
    NATURE METHODS, 2018, 15 (05) : 339 - +
  • [46] Latent network-based representations for large-scale gene expression data analysis
    Wajdi Dhifli
    Julia Puig
    Aurélien Dispot
    Mohamed Elati
    BMC Bioinformatics, 19
  • [47] Identification of metagenes and their Interactions through Large-scale Analysis of Arabidopsis Gene Expression Data
    Tyler J Wilson
    Liming Lai
    Yuguang Ban
    Steven X Ge
    BMC Genomics, 13
  • [48] Latent network-based representations for large-scale gene expression data analysis
    Dhifli, Wajdi
    Puig, Julia
    Dispot, Aurelien
    Elati, Mohamed
    BMC BIOINFORMATICS, 2019, 19 (Suppl 13)
  • [49] Finding regulatory modules through large-scale gene-expression data analysis
    Kloster, M
    Tang, C
    Wingreen, NS
    BIOINFORMATICS, 2005, 21 (07) : 1172 - 1179
  • [50] GEDI: a user-friendly toolbox for analysis of large-scale gene expression data
    André Fujita
    João R Sato
    Carlos E Ferreira
    Mari C Sogayar
    BMC Bioinformatics, 8