SCANPY: large-scale single-cell gene expression data analysis

被引:0
|
作者
F. Alexander Wolf
Philipp Angerer
Fabian J. Theis
机构
[1] Institute of Computational Biology,Helmholtz Zentrum München – German Research Center for Environmental Health
[2] Technische Universität München,Department of Mathematics
来源
关键词
Single-cell transcriptomics; Machine learning; Scalability; Graph analysis; Clustering; Pseudotemporal ordering; Trajectory inference; Differential expression testing; Visualization; Bioinformatics;
D O I
暂无
中图分类号
学科分类号
摘要
Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).
引用
收藏
相关论文
共 50 条
  • [31] Spatial reconstruction of single-cell gene expression data
    Satija, Rahul
    Farrell, Jeffrey A.
    Gennert, David
    Schier, Alexander F.
    Regev, Aviv
    NATURE BIOTECHNOLOGY, 2015, 33 (05) : 495 - U206
  • [32] Large-scale neural model for visual attention: Integration of experimental single-cell and fMRI data
    Corchs, S
    Deco, G
    CEREBRAL CORTEX, 2002, 12 (04) : 339 - 348
  • [33] scSampler: fast diversity-preserving subsampling of large-scale single-cell transcriptomic data
    Song, Dongyuan
    Xi, Nan Miles
    Li, Jingyi Jessica
    Wang, Lin
    BIOINFORMATICS, 2022, 38 (11) : 3126 - 3127
  • [34] GENE DISCOVERY METHODS FROM LARGE-SCALE GENE EXPRESSION DATA
    Shimizu, Akifumi
    Yano, Kentaro
    QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 489 - +
  • [35] Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data
    Cheng, Changde
    Easton, John
    Rosencrance, Celeste
    Li, Yan
    Ju, Bensheng
    Williams, Justin
    Mulder, Heather L.
    Pang, Yakun
    Chen, Wenan
    Chen, Xiang
    NUCLEIC ACIDS RESEARCH, 2019, 47 (22)
  • [36] Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
    Marco, Eugenio
    Karp, Robert L.
    Guo, Guoji
    Robson, Paul
    Hart, Adam H.
    Trippa, Lorenzo
    Yuan, Guo-Cheng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (52) : E5643 - E5650
  • [37] Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq
    Bo Li
    Joshua Gould
    Yiming Yang
    Siranush Sarkizova
    Marcin Tabaka
    Orr Ashenberg
    Yanay Rosen
    Michal Slyper
    Monika S. Kowalczyk
    Alexandra-Chloé Villani
    Timothy Tickle
    Nir Hacohen
    Orit Rozenblatt-Rosen
    Aviv Regev
    Nature Methods, 2020, 17 : 793 - 798
  • [38] Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq
    Li, Bo
    Gould, Joshua
    Yang, Yiming
    Sarkizova, Siranush
    Tabaka, Marcin
    Ashenberg, Orr
    Rosen, Yanay
    Slyper, Michal
    Kowalczyk, Monika S.
    Villani, Alexandra-Chloe
    Tickle, Timothy
    Hacohen, Nir
    Rozenblatt-Rosen, Orit
    Regev, Aviv
    NATURE METHODS, 2020, 17 (08) : 793 - +
  • [39] Large-scale single-cell trapping and imaging using microwell arrays
    Rettig, JR
    Folch, A
    ANALYTICAL CHEMISTRY, 2005, 77 (17) : 5628 - 5634
  • [40] Multimodal FACED imaging for large-scale single-cell morphological profiling
    Yip, Gwinky G. K.
    Lo, Michelle C. K.
    Yan, Wenwei
    Lee, Kelvin C. M.
    Lai, Queenie T. K.
    Wong, Kenneth K. Y.
    Tsia, Kevin K.
    APL PHOTONICS, 2021, 6 (07)