SCANPY: large-scale single-cell gene expression data analysis

被引:0
|
作者
F. Alexander Wolf
Philipp Angerer
Fabian J. Theis
机构
[1] Institute of Computational Biology,Helmholtz Zentrum München – German Research Center for Environmental Health
[2] Technische Universität München,Department of Mathematics
来源
关键词
Single-cell transcriptomics; Machine learning; Scalability; Graph analysis; Clustering; Pseudotemporal ordering; Trajectory inference; Differential expression testing; Visualization; Bioinformatics;
D O I
暂无
中图分类号
学科分类号
摘要
Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).
引用
收藏
相关论文
共 50 条
  • [21] Selecting gene features for unsupervised analysis of single-cell gene expression data
    Sheng, Jie
    Li, Wei Vivian
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [22] Differential gene expression analysis in single-cell RNA sequencing data
    Wang, Tianyu
    Nabavi, Sheida
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 202 - 207
  • [23] Large-scale neurophysiology and single-cell profiling in human neuroscience
    Lee, Anthony T.
    Chang, Edward F.
    Paredes, Mercedes F.
    Nowakowski, Tomasz J.
    NATURE, 2024, 630 (8017) : 587 - 595
  • [24] Interactive visualization of large-scale gene expression data
    Riveiro, Maria
    Lebram, Mikael
    Andersson, Christian X.
    Sartipy, Peter
    Synnergren, Jane
    PROCEEDINGS 2016 20TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION IV 2016, 2016, : 348 - 354
  • [25] A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings
    Shen, Hongru
    Shen, Xilin
    Feng, Mengyao
    Wu, Dan
    Zhang, Chao
    Yang, Yichen
    Yang, Meng
    Hu, Jiani
    Liu, Jilei
    Wang, Wei
    Li, Yang
    Zhang, Qiang
    Yang, Jilong
    Chen, Kexin
    Li, Xiangchun
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [26] Large-scale synthesis of multifunctional janus particles for single-cell in situ cytokine analysis
    Zhao, Peng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [27] Benchmarking principal component analysis for large-scale single-cell RNA-sequencing
    Koki Tsuyuzaki
    Hiroyuki Sato
    Kenta Sato
    Itoshi Nikaido
    Genome Biology, 21
  • [28] Benchmarking principal component analysis for large-scale single-cell RNA-sequencing
    Tsuyuzaki, Koki
    Sato, Hiroyuki
    Sato, Kenta
    Nikaido, Itoshi
    GENOME BIOLOGY, 2020, 21 (01)
  • [29] Large-scale gene expression data analysis: A new challenge to computational biologists
    Zhang, MQ
    GENOME RESEARCH, 1999, 9 (08) : 681 - 688
  • [30] Spatial reconstruction of single-cell gene expression data
    Rahul Satija
    Jeffrey A Farrell
    David Gennert
    Alexander F Schier
    Aviv Regev
    Nature Biotechnology, 2015, 33 : 495 - 502