Automated Protocol for Large-Scale Modeling of Gene Expression Data

被引:3
|
作者
Hall, Michelle Lynn [1 ,3 ]
Calkins, David [2 ]
Sherman, Woody [1 ]
机构
[1] Schrodinger Inc, 222 Third St, Cambridge, MA 02143 USA
[2] Schrodinger Inc, 101 SW Main St 1300, Portland, OR 97204 USA
[3] Moderna Therapeut, 200 Technol Sq, Cambridge, MA 02139 USA
关键词
FINGERPRINT METHODS; CONNECTIVITY MAP; DRUG DESIGN; DISCOVERY; 2D; PERFORMANCE; TOOL;
D O I
10.1021/acs.jcim.6b00260
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
With the continued rise of phenotypic- and genotypic-based screening projects, computational methods to analyze, process, and ultimately make predictions in this field take on growing importance. Here we show how automated machine learning workflows can produce models that are predictive of differential gene expression as a function of a compound structure using data from A673 cells as a proof of principle. In particular, we present predictive models with an average accuracy of greater than 70% across a highly diverse similar to 1000 gene expression profile. In contrast to the usual in silico design paradigm, where one interrogates a particular target-based response, this work opens the opportunity for-virtual screening and lead optimization for desired multitarget gene expression profiles.
引用
收藏
页码:2216 / 2224
页数:9
相关论文
共 50 条
  • [1] Analysis of large-scale gene expression data
    Sherlock, G
    [J]. CURRENT OPINION IN IMMUNOLOGY, 2000, 12 (02) : 201 - 205
  • [2] Interactive visualization of large-scale gene expression data
    Riveiro, Maria
    Lebram, Mikael
    Andersson, Christian X.
    Sartipy, Peter
    Synnergren, Jane
    [J]. PROCEEDINGS 2016 20TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION IV 2016, 2016, : 348 - 354
  • [3] GENE DISCOVERY METHODS FROM LARGE-SCALE GENE EXPRESSION DATA
    Shimizu, Akifumi
    Yano, Kentaro
    [J]. QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 489 - +
  • [4] Challenges and prospects in the analysis of large-scale gene expression data
    Ihmeis, JH
    Bergmann, S
    [J]. BRIEFINGS IN BIOINFORMATICS, 2004, 5 (04) : 313 - 327
  • [5] covRNA: discovering covariate associations in large-scale gene expression data
    Lara Urban
    Christian W. Remmele
    Marcus Dittrich
    Roland F. Schwarz
    Tobias Müller
    [J]. BMC Research Notes, 13
  • [6] covRNA: discovering covariate associations in large-scale gene expression data
    Urban, Lara
    Remmele, Christian W.
    Dittrich, Marcus
    Schwarz, Roland F.
    Mueller, Tobias
    [J]. BMC RESEARCH NOTES, 2020, 13 (01)
  • [7] Iterative signature algorithm for the analysis of large-scale gene expression data
    Bergmann, S
    Ihmels, J
    Barkai, N
    [J]. PHYSICAL REVIEW E, 2003, 67 (03):
  • [8] Exploiting Scientific Workflows for Large-scale Gene Expression Data Analysis
    De Stasio, Alessandro
    Ertelt, Marcus
    Kemmner, Wolfgang
    Leser, Ulf
    Ceccarelli, Michele
    [J]. 2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 447 - +
  • [9] Defining transcription modules using large-scale gene expression data
    Ihmels, J
    Bergmann, S
    Barkai, N
    [J]. BIOINFORMATICS, 2004, 20 (13) : 1993 - 2003
  • [10] Automated Large-Scale Control of Gene Regulatory Networks
    Tan, Mehmet
    Alhajj, Reda
    Polat, Faruk
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (02): : 286 - 297