On the log abundance for compact Kähler threefolds

被引:0
|
作者
Omprokash Das
Wenhao Ou
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Chinese Academy of Sciences,Institute of Mathematics, Academy of Mathematics and Systems Science
来源
manuscripta mathematica | 2024年 / 173卷
关键词
14E30; 32J17; 32J27;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we show that if (X,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \Delta )$$\end{document} is a log canonical compact Kähler threefold such that KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is nef and the numerical dimension ν(KX+Δ)≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (K_X+\Delta )\ne 2$$\end{document}, then KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is semi-ample.
引用
收藏
页码:341 / 404
页数:63
相关论文
共 50 条
  • [41] Kähler–Einstein Metrics on Stable Varieties and log Canonical Pairs
    Robert J. Berman
    Henri Guenancia
    Geometric and Functional Analysis, 2014, 24 : 1683 - 1730
  • [42] ABUNDANCE FOR KAHLER THREEFOLDS
    Campana, Frederic
    Hoering, Andreas
    Peternell, Thomas
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2016, 49 (04): : 971 - 1025
  • [43] An Ohsawa-Takegoshi theorem on compact Khler manifolds
    YI Li
    ScienceChina(Mathematics), 2014, 57 (01) : 9 - 30
  • [44] Toric Kähler–Einstein Metrics and Convex Compact Polytopes
    Eveline Legendre
    The Journal of Geometric Analysis, 2016, 26 : 399 - 427
  • [45] On some classes of ω-plurisubharmonic functions on compact Kähler manifolds
    Phu N.V.
    Hung V.V.
    Acta Mathematica Vietnamica, 2013, 38 (4) : 617 - 625
  • [46] Killing Fields on Compact Pseudo-Kähler Manifolds
    Derdzinski, Andrzej
    Terek, Ivo
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)
  • [47] On the homotopy types of compact Kähler and complex projective manifolds
    Claire Voisin
    Inventiones mathematicae, 2004, 157 : 329 - 343
  • [48] Correction to: Compact Kähler surfaces with trivial canonical bundle
    Nicholas Buchdahl
    Annals of Global Analysis and Geometry, 2025, 67 (3)
  • [49] Killing Fields on Compact Pseudo-Kähler Manifolds
    Andrzej Derdzinski
    Ivo Terek
    The Journal of Geometric Analysis, 2024, 34
  • [50] Degenerate J-flow on compact Kähler manifolds
    Tat Dat Tô
    Mathematische Zeitschrift, 2023, 303