On the log abundance for compact Kähler threefolds

被引:0
|
作者
Omprokash Das
Wenhao Ou
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Chinese Academy of Sciences,Institute of Mathematics, Academy of Mathematics and Systems Science
来源
manuscripta mathematica | 2024年 / 173卷
关键词
14E30; 32J17; 32J27;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we show that if (X,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X, \Delta )$$\end{document} is a log canonical compact Kähler threefold such that KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is nef and the numerical dimension ν(KX+Δ)≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (K_X+\Delta )\ne 2$$\end{document}, then KX+Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+\Delta $$\end{document} is semi-ample.
引用
收藏
页码:341 / 404
页数:63
相关论文
共 50 条